97 research outputs found

    Elimination of Dietary Gluten Does Not Reduce Titers of Type 1 Diabetes-Associated Autoantibodies in High-Risk Subjects

    Get PDF
    OBJECTIVE—Removal of the dietary wheat protein gluten protects against autoimmune diabetes in animal models. Furthermore, elimination of dietary gluten reduces the frequency of type 1 diabetes in patients with celiac disease. Herein we test the hypothesis that gluten is the driving antigen for type 1 diabetes-associated islet autoimmunity.RESEARCH DESIGN AND METHODS—Seven autoantibody-positive, first-degree relatives of patients with type 1 diabetes were placed on a gluten-free diet for 12 months followed by gluten reexposure for 12 months. Gliadin antibodies as well as the diabetes-related antibodies insulin autoantibody (IAA), GAD antibody (GADA), and tyrosin phosphatase IA2 antibody (IA-2A) were measured every 3 months; oral glucose tolerance tests were performed every 6 months. Changes in autoantibody titers were compared with those observed in a matched historical cohort.RESULTS—A reduction in IgG gliadin antibody titers was observed during the gluten-free period, but titers of diabetes-associated autoantibodies changed independently of gluten exposure. Type 1 diabetes-associated islet autoantibody levels at the end of the gluten-free diet period were not significantly different from those before commencement of the diet (P = 0.2) or at the end of the gluten reexposure period (P = 0.4). Changes in individual subjects were identified, but no differences were noted between the gluten-free and the gluten re-exposure periods, and the changes were similar to those observed in the historical control cohort (P = 1.0). Major titer reductions (>50%) in the gluten-free period were observed in only one subject for all antibodies. Type 1 diabetes developed in this subject and in a second subject during the gluten reexposure period.CONCLUSIONS—The findings do not support the hypothesis that gluten is a driving antigen in type 1 diabetes

    Two Distinctly HLA-Associated Contiguous Linear Epitopes Uniquely Expressed Within the Islet Antigen 2 Molecule Are Major Autoantibody Epitopes of the Diabetes-Specific Tyrosine Phosphatase-Like Protein Autoantigens

    Get PDF
    AbstractThe related tyrosine phosphatase-like proteins islet Ag (IA)-2 and IA-2β are autoantigens of type 1 diabetes in humans. Autoantibodies are predominantly against IA-2, and IA-2-specific epitopes are major autoantibody targets. We used the close homology of IA-2 and IA-2β to design chimeras and mutants to identify humoral IA-2-specific epitopes. Two major IA-2 epitopes that are absent from the related autoantigens IA-2β and IA-2Δ 13 splice variant ICA512.bdc were found contiguous to each other within IA-2 juxtamembrane amino acids 611–620 (epitope JM1) and 621–630 (epitope JM2). JM1 and JM2 are recognized by sera from 67% of patients with IA-2 Abs, and relatives of patients with type 1 diabetes having Abs to either JM epitope had a >50% risk for developing type 1 diabetes within 6 years, even in the absence of diabetes-associated HLA genotypes. Remarkably, the presence of Abs to one of these two epitopes was mutually exclusive of the other; JM2 Abs and not JM1 Abs were found in relatives with HLA DR3/4, DR4/13, or DR1/4 genotypes; and the binding of autoantibodies to the JM2 epitope, but not the JM1 epitope, markedly affected proteolysis of IA-2. This is a unique demonstration of HLA-associated B cell responses to epitopes within a single autoantigen in humans and is consistent with modification of Ag processing by specific Ab-influencing peptide presentation by HLA molecules

    Primary Dietary Intervention Study to Reduce the Risk of Islet Autoimmunity in Children at Increased Risk for Type 1 Diabetes: The BABYDIET study

    Get PDF
    OBJECTIVE: To determine whether delaying the introduction of gluten in infants with a genetic risk of islet autoimmunity is feasible, safe, and may reduce the risk of type 1 diabetes-associated islet autoimmunity. RESEARCH DESIGN AND METHODS: A total of 150 infants with a first-degree family history of type 1 diabetes and a risk HLA genotype were randomly assigned to a first gluten exposure at age 6 months (control group) or 12 months (late-exposure group) and were followed 3 monthly until the age of 3 years and yearly thereafter for safety (for growth and autoantibodies to transglutaminase C [TGCAs]), islet autoantibodies to insulin, GAD, insulinoma-associated protein 2, and type 1 diabetes. RESULTS: Adherence to the dietary-intervention protocol was reported from 70% of families. During the first 3 years, weight and height were similar in children in the control and late-exposure groups, as was the probability of developing TGCAs (14 vs. 4%; P = 0.1). Eleven children in the control group and 13 children in the late-exposure group developed islet autoantibodies (3-year risk: 12 vs. 13%; P = 0.6). Seven children developed diabetes, including four in the late-exposure group. No significant differences were observed when children were analyzed as per protocol on the basis of the reported first gluten exposure of the children. CONCLUSIONS: Delaying gluten exposure until the age of 12 months is safe but does not substantially reduce the risk for islet autoimmunity in genetically at-risk children

    Autoimmunity in gestational diabetes mellitus in Sardinia: a preliminary case-control report

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We previously reported a high prevalence (22.3%) of gestational diabetes mellitus (GDM) in a large group of Sardinian women, in contrast with the prevalence of Type 2 diabetes. Sardinia has an unusual distribution of haplotypes and genotypes, with the highest population frequency of HLA DR3 in the world, and after Finland, the highest prevalence of Type 1 diabetes and Autoimmune-related Diseases. In this study we preliminarily tested the prevalence of serological markers of Type 1 diabetes in a group of Sardinian GDM patients.</p> <p>Methods</p> <p>We determined glutamic decarboxylase antibodies (anti-GAD65), protein tyrosine phosphatase ICA 512 (IA2) antibodies (anti-IA2), and IAA in 62 GDM patients, and in 56 controls with matching age, gestational age and parity.</p> <p>Results</p> <p>We found a high prevalence and very unusual distribution of antibodies in GDM patients (38.8%), the anti-IA2 being the most frequent antibody. Out of all our GDM patients, 38.8% (24 of 62) were positive for at least one antibody. Anti-IA2 was present in 29.0 % (18 out of 62) vs. 7.1% (4 out of 56) in the controls (P < 0.001). IAA was present in 14.5% (9 out of 62) of our GDM patients, and absent in the control subjects (P < 0.001). Anti-GAD65 was also present in GDM patients, with a prevalence of 3.2% (2 out of 62) while it was absent in the control group (P = NS). Pre-gestational weight was significantly lower (57.78 ± 9.8 vs 65.9 ± 17.3 <it>P </it>= 0.04) in auto-antibodies- positive GDM patients.</p> <p>Conclusion</p> <p>These results are in contrast with the very low prevalence of all antibodies reported in Italy. If confirmed, they could indicate that a large proportion of GDM patients in Sardinia have an autoimmune origin, in accordance with the high prevalence of Type 1 diabetes.</p

    Wolfram Syndrome: New Mutations, Different Phenotype

    Get PDF
    BACKGROUND: Wolfram Syndrome (WS) is an autosomal recessive neurodegenerative disorder characterized by Diabetes Insipidus, Diabetes Mellitus, Optic Atrophy, and Deafness identified by the acronym "DIDMOAD". The WS gene, WFS1, encodes a transmembrane protein called Wolframin, which recent evidence suggests may serve as a novel endoplasmic reticulum calcium channel in pancreatic β-cells and neurons. WS is a rare disease, with an estimated prevalence of 1/550.000 children, with a carrier frequency of 1/354. The aim of our study was to determine the genotype of WS patients in order to establish a genotype/phenotype correlation. METHODOLOGY/PRINCIPAL FINDINGS: We clinically evaluated 9 young patients from 9 unrelated families (6 males, 3 females). Basic criteria for WS clinical diagnosis were coexistence of insulin-treated diabetes mellitus and optic atrophy occurring before 15 years of age. Genetic analysis for WFS1 was performed by direct sequencing. Molecular sequencing revealed 5 heterozygous compound and 3 homozygous mutations. All of them were located in exon 8, except one in exon 4. In one proband only an heterozygous mutation (A684V) was found. Two new variants c.2663 C>A and c.1381 A>C were detected. CONCLUSIONS/SIGNIFICANCE: Our study increases the spectrum of WFS1 mutations with two novel variants. The male patient carrying the compound mutation [c.1060_1062delTTC]+[c.2663 C>A] showed the most severe phenotype: diabetes mellitus, optic atrophy (visual acuity 5/10), deafness with deep auditory bilaterally 8000 Hz, diabetes insipidus associated to reduced volume of posterior pituitary and pons. He died in bed at the age of 13 years. The other patient carrying the compound mutation [c.409_424dup16]+[c.1381 A>C] showed a less severe phenotype (DM, OA)

    Influence of HLA-DR and -DQ alleles on autoantibody recognition of distinct epitopes within the juxtamembrane domain of the IA-2 autoantigen in type 1 diabetes

    Get PDF
    Aims/hypothesis: Insulinoma-associated protein 2 (IA-2) is a major target of autoimmunity in type 1 diabetes. When first detected, IA-2-autoantibodies commonly bind epitopes in the juxtamembrane (JM) domain of IA-2 and antibody responses subsequently spread to the tyrosine phosphatase domain. Definition of structures of epitopes in the JM domain, and genetic requirements for autoimmunity to these epitopes, is important for our understanding of initiation and progression of autoimmunity. The aims of this study were to investigate the contribution of individual amino acids in the IA-2 JM domain to antibody binding to these epitopes and the role of HLA genotypes in determining epitope specificity. Methods: Regions of the JM domain recognised by autoantibodies were identified by peptide competition and inhibitory effects of alanine substitutions of residues within the JM region. Antibody binding was determined by radioligand binding assays using sera from patients genotyped for HLA-DRB1 and -DQB1 alleles. Results: Patients were categorised into two distinct groups of JM antibody reactivity according to peptide inhibition. Inhibition by substitutions of individual amino acids within the JM domain differed between patients, indicating heterogeneity in epitope recognition. Cluster analysis defined six groups of residues having similar inhibitory effects on antibody binding, with three clusters showing differences in patients affected or unaffected by peptide. One cluster demonstrated significant differences in antibody binding between HLA-DRB1*04 and HLA-DRB1*07 patients and within DRB1*04 individuals; antibody recognition of a second cluster depended on expression of HLA-DQB1*0302. Conclusions/interpretation: The results identify amino acids contributing to distinct epitopes on IA-2, with both HLA-DR and HLA-DQ alleles influencing epitope specificity

    Specific and redundant functions of Fgf receptors in development of the midbrain and anterior hindbrain of the mouse.

    No full text
    Fibroblast growth factors (Fgfs) are important for the development of the mid-/hindbrain region (MHR). The inactivation of Fgf8 in the MHR leads to a complete loss of tissue in that region. A conditional mouse mutant for the fibroblast growth factor receptor 1 (Fgfr1) gene in the MHR exhibits only restricted tissue loss in that region, allowing for a detailed analysis of the function of Fgfr1 in patterning and neuronal specification. Indeed, a specific role for Fgfr1 in the development of dopaminergic and serotonergic neurons was found in the ventral MHR of conditional Fgfr1 mutant mice. Furthermore, a series of intercrosses between conditional Fgfr1 MHR mutants and Fgfr2 conditional mice showed, that the contribution of Fgfr1 to development of the MHR is more crucial than that of Fgfr2. This is probably due to the more abundant expression of Fgfr1 in the MHR, but also includes differential gene dosage effects
    corecore