123 research outputs found

    Fabrication and characterization of PU-g-poly(HEMA) film for clotting time and platelet adhesion

    Get PDF
    This paper describes a fabrication of poly (2-hydroxylethyl methacrylate) poly(HEMA) grafted on polyurethane (PU) film prepared by radiation-induced grafting (RIG) copolymerization method using electron beam irradiation for the first time. This method was well known to be fast technique, clean method without involve any chemical initiator, chemically bond the materials, and at the same time is a sterile technique suitable for further potential of biomedical application. This poly(HEMA) grafted on PU film or called as PU-g-poly(HEMA) films was analysed using Fourier-transform infrared (FTIR), scanning electron microscope (SEM), water contact angle analyser (WCA), platelet adhesion and clotting time measurement. As the results, poly(HEMA) was confirmed successful grafted on PU based on the shifting of the functional group, no significant changes in surface morphology, lowering the water contact angle from 78.28° to 70.02°, nearly no platelet adhesion and no excessive disturbance of the clotting time was observed. This means that PU-g-poly(HEMA) was improved its hydrophilicity, thus significantly reduced the platelet adhesion and maintain the normal range of time taken for blood to clot. Therefore, the present PU-g-poly(HEMA) films not only improved hydrophilicity, however, was also compatible with blood. Thus, it may be potential candidates in the biomedical devices or new biomaterial useful for future tissue engineering fields

    The Effectiveness of a Suggested E-learning Program Using Keeler’s Strategy to Build a Basic Model for a Girl’s Dress in an Innovative Way

    Get PDF
    The process of preparing patterns is considered one of the most accurate and important jobs on which the ready-made garment industry relies, as the success of the design and production depends entirely on it. Children’s patterns are among the most important types of patterns, whose control and method of construction affects the comfort of the child, which calls on researchers to continuously develop ways to build these patterns. It is characterized by exactness and ease of construction and learning, and after many studies have proven the effectiveness of electronic educational and training programs with appropriate education strategies in learning to prepare patterns. The pattern, and the use of Keelers strategy to master his learning, and the research followed the descriptive approach, and the applied approach. The child achieves excellent control over the body for all sizes, according to the opinions of the arbitrators, where The value of the quality coefficient for adjusting sizes ranged between (94.13) to (95.07), which represents a high degree of acceptance (excellent), and the value of the quality coefficient for adjusting (front, side, back, sleeve) for different sizes ranged between (93.94) to (94.74), which represents A high degree of acceptance (excellent), and the evaluation of the proposed program achieved an excellent evaluation according to the opinions, achieving the arithmetic mean (4.93), and the relative weight (98.67). Finally, the training program achieved a significant impact on the level of knowledge and skill achievement of the trainees

    Long-Lasting Inhibitory Effects of Fetal Liver Mesenchymal Stem Cells on T-Lymphocyte Proliferation

    Get PDF
    Human bone marrow mesenchymal stem cells (BM-MSC) are multipotent progenitor cells that have transient immunomodulatory properties on Natural Killer (NK) cells, Dendritic Cells (DC), and T cells. This study compared the use of MSC isolated from bone marrow and fetal liver (FL-MSC) to determine which displayed the most efficient immunosuppressive effects on T cell activation. Although both types of MSC exhibit similar phenotype profile, FL-MSC displays a much more extended in vitro life-span and immunomodulatory properties. When co-cultured with CD3/CD28-stimulated T cells, both BM-MSC and FL-MSC affected T cell proliferation by inhibiting their entry into the cell cycle, by inducing the down-regulation of phospho-retinoblastoma (pRb), cyclins A and D1, as well as up-regulating p27kip1expression. The T cell inhibition by MSC was not due to the soluble HLA-G5 isoform, but to the surface expression of HLA-G1, as shown by the need of cell-cell contact and by the use of neutralizing anti-HLA-G antibodies. To note, in a HLA-G-mediated fashion, MSC facilitated the expansion of a CD4low/CD8low T subset that had decreased secretion of IFN-γ, and an induced secretion of the immunomodulatory cytokine IL-10. Because of their longer lasting in vitro immunosuppressive properties, mainly mediated by HLA-G, and their more efficient induction of IL-10 production and T cell apoptosis, fetal liver MSC could be considered a new tool for MSC therapy to prevent allograft rejection

    New perspectives in human stem cell therapeutic research

    Get PDF
    Human stem cells are in evaluation in clinical stem cell trials, primarily as autologous bone marrow studies, autologous and allogenic mesenchymal stem cell trials, and some allogenic neural stem cell transplantation projects. Safety and efficacy are being addressed for a number of disease state applications. There is considerable data supporting safety of bone marrow and mesenchymal stem cell transplants but the efficacy data are variable and of mixed benefit. Mechanisms of action of many of these cells are unknown and this raises the concern of unpredictable results in the future. Nevertheless there is considerable optimism that immune suppression and anti-inflammatory properties of mesenchymal stem cells will be of benefit for many conditions such as graft versus host disease, solid organ transplants and pulmonary fibrosis. Where bone marrow and mesenchymal stem cells are being studied for heart disease, stroke and other neurodegenerative disorders, again progress is mixed and mostly without significant benefit. However, correction of multiple sclerosis, at least in the short term is encouraging. Clinical trials on the use of embryonic stem cell derivatives for spinal injury and macular degeneration are beginning and a raft of other clinical trials can be expected soon, for example, the use of neural stem cells for killing inoperable glioma and embryonic stem cells for regenerating β islet cells for diabetes. The change in attitude to embryonic stem cell research with the incoming Obama administration heralds a new co-operative environment for study and evaluation of stem cell therapies. The Californian stem cell initiative (California Institute for Regenerative Medicine) has engendered global collaboration for this new medicine that will now also be supported by the US Federal Government. The active participation of governments, academia, biotechnology, pharmaceutical companies, and private investment is a powerful consortium for advances in health

    Cell Therapy of Congenital Corneal Diseases with Umbilical Mesenchymal Stem Cells: Lumican Null Mice

    Get PDF
    BACKGROUND: Keratoplasty is the most effective treatment for corneal blindness, but suboptimal medical conditions and lack of qualified medical personnel and donated cornea often prevent the performance of corneal transplantation in developing countries. Our study aims to develop alternative treatment regimens for congenital corneal diseases of genetic mutation. METHODOLOGY/PRINCIPAL FINDINGS: Human mesenchymal stem cells isolated from neonatal umbilical cords were transplanted to treat thin and cloudy corneas of lumican null mice. Transplantation of umbilical mesenchymal stem cells significantly improved corneal transparency and increased stromal thickness of lumican null mice, but human umbilical hematopoietic stem cells failed to do the same. Further studies revealed that collagen lamellae were re-organized in corneal stroma of lumican null mice after mesenchymal stem cell transplantation. Transplanted umbilical mesenchymal stem cells survived in the mouse corneal stroma for more than 3 months with little or no graft rejection. In addition, these cells assumed a keratocyte phenotype, e.g., dendritic morphology, quiescence, expression of keratocyte unique keratan sulfated keratocan and lumican, and CD34. Moreover, umbilical mesenchymal stem cell transplantation improved host keratocyte functions, which was verified by enhanced expression of keratocan and aldehyde dehydrogenase class 3A1 in lumican null mice. CONCLUSIONS/SIGNIFICANCE: Umbilical mesenchymal stem cell transplantation is a promising treatment for congenital corneal diseases involving keratocyte dysfunction. Unlike donated corneas, umbilical mesenchymal stem cells are easily isolated, expanded, stored, and can be quickly recovered from liquid nitrogen when a patient is in urgent need

    Mycoplasma Contamination Revisited: Mesenchymal Stromal Cells Harboring Mycoplasma hyorhinis Potently Inhibit Lymphocyte Proliferation In Vitro

    Get PDF
    Mesenchymal stromal cells (MSC) have important immunomodulatory effects that can be exploited in the clinical setting, e.g. in patients suffering from graft-versus-host disease after allogeneic stem cell transplantation. In an experimental animal model, cultures of rat T lymphocytes were stimulated in vitro either with the mitogen Concanavalin A or with irradiated allogeneic cells in mixed lymphocyte reactions, the latter to simulate allo-immunogenic activation of transplanted T cells in vivo. This study investigated the inhibitory effects of rat bone marrow-derived MSC subsequently found to be infected with a common mycoplasma species (Mycoplasma hyorhinis) on T cell activation in vitro and experimental graft-versus-host disease in vivo.We found that M. hyorhinis infection increased the anti-proliferative effect of MSC dramatically, as measured by both radiometric and fluorimetric methods. Inhibition could not be explained solely by the well-known ability of mycoplasmas to degrade tritiated thymidine, but likely was the result of rapid dissemination of M. hyorhinis in the lymphocyte culture.This study demonstrates the potent inhibitory effect exerted by M. hyorhinis in standard lymphocyte proliferation assays in vitro. MSC are efficient vectors of mycoplasma infection, emphasizing the importance of monitoring cell cultures for contamination

    LIF-Dependent Signaling: New Pieces in the Lego

    Get PDF
    LIF, a member of the IL6 family of cytokine, displays pleiotropic effects on various cell types and organs. Its critical role in stem cell models (e.g.: murine ES, human mesenchymal cells) and its essential non redundant function during the implantation process of embryos, in eutherian mammals, put this cytokine at the core of many studies aiming to understand its mechanisms of action, which could benefit to medical applications. In addition, its conservation upon evolution raised the challenging question concerning the function of LIF in species in which there is no implantation. We present the recent knowledge about the established and potential functions of LIF in different stem cell models, (embryonic, hematopoietic, mesenchymal, muscle, neural stem cells and iPSC). We will also discuss EVO-DEVO aspects of this multifaceted cytokine

    Therapeutic potential of transplanted placental mesenchymal stem cells in treating Chinese miniature pigs with acute liver failure

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Stem cell-based therapy to treat liver diseases is a focus of current research worldwide. So far, most such studies depend on rodent hepatic failure models. The purpose of this study was to isolate mesenchymal stem cells from human placenta (hPMSCs) and determine their therapeutic potential for treating Chinese experimental miniature pigs with acute liver failure (ALF).</p> <p>Methods</p> <p>hPMSCs were isolated and analyzed for their purity and differentiation potential before being employed as the donor cells for transplantation. ALF models of Chinese experimental miniature pigs were established and divided into four groups: no cell transplantation; hPMSCs transplantation via the jugular vein; X-ray-treated hPMSCs transplantation via the portal vein; and hPMSCs transplantation via the portal vein. The restoration of biological functions of the livers receiving transplantation was assessed via a variety of approaches such as mortality rate determination, serum biochemical analysis, and histological, immunohistochemical, and genetic analysis.</p> <p>Results</p> <p>hPMSCs expressed high levels of CD29, CD73, CD13, and CD90, had adipogenic, osteogenic, and hepatic differentiation potential. They improved liver functions <it>in vivo </it>after transplantation into the D-galactosamine-injured pig livers as evidenced by the fact that ALT, AST, ALP, CHE, TBIL, and TBA concentrations returned to normal levels in recipient ALF pigs. Meanwhile, histological data revealed that transplantation of hPMSCs via the portal vein reduced liver inflammation, decreased hepatic denaturation and necrosis, and promoted liver regeneration. These ameliorations were not found in the other three groups. The result of 7-day survival rates suggested that hPMSCs transplantation via the portal vein was able to significantly prolong the survival of ALF pigs compared with the other three groups. Histochemistry and RT-PCR results confirmed the presence of transplanted human cells in recipient pig livers (Groups III, IV).</p> <p>Conclusions</p> <p>Our data revealed that hPMSCs could not only differentiate into hepatocyte-like cells <it>in vitro </it>and <it>in vivo</it>, but could also prolong the survival time of ALF pigs. Regarding the transplantation pathways, the left branch of the portal vein inside the liver was superior to the jugular vein pathway. Thus, hPMSCs transplantation through the portal vein by B-ultrasonography may represent a superior approach for treating liver diseases.</p

    Mortality and pulmonary complications in patients undergoing surgery with perioperative sars-cov-2 infection: An international cohort study

    Get PDF
    Background The impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on postoperative recovery needs to be understood to inform clinical decision making during and after the COVID-19 pandemic. This study reports 30-day mortality and pulmonary complication rates in patients with perioperative SARS-CoV-2 infection. Methods This international, multicentre, cohort study at 235 hospitals in 24 countries included all patients undergoing surgery who had SARS-CoV-2 infection confirmed within 7 days before or 30 days after surgery. The primary outcome measure was 30-day postoperative mortality and was assessed in all enrolled patients. The main secondary outcome measure was pulmonary complications, defined as pneumonia, acute respiratory distress syndrome, or unexpected postoperative ventilation. Findings This analysis includes 1128 patients who had surgery between Jan 1 and March 31, 2020, of whom 835 (740%) had emergency surgery and 280 (248%) had elective surgery. SARS-CoV-2 infection was confirmed preoperatively in 294 (261%) patients. 30-day mortality was 238% (268 of 1128). Pulmonary complications occurred in 577 (512%) of 1128 patients; 30-day mortality in these patients was 380% (219 of 577), accounting for 817% (219 of 268) of all deaths. In adjusted analyses, 30-day mortality was associated with male sex (odds ratio 175 [95% CI 128-240], p&lt;00001), age 70 years or older versus younger than 70 years (230 [165-322], p&lt;00001), American Society of Anesthesiologists grades 3-5 versus grades 1-2 (235 [157-353], p&lt;00001), malignant versus benign or obstetric diagnosis (155 [101-239], p=0046), emergency versus elective surgery (167 [106-263], p=0026), and major versus minor surgery (152 [101-231], p=0047). Interpretation Postoperative pulmonary complications occur in half of patients with perioperative SARS-CoV-2 infection and are associated with high mortality. Thresholds for surgery during the COVID-19 pandemic should be higher than during normal practice, particularly in men aged 70 years and older. Consideration should be given for postponing non-urgent procedures and promoting non-operative treatment to delay or avoid the need for surgery. Funding National Institute for Health Research (NIHR), Association of Coloproctology of Great Britain and Ireland, Bowel and Cancer Research, Bowel Disease Research Foundation, Association of Upper Gastrointestinal Surgeons, British Association of Surgical Oncology, British Gynaecological Cancer Society, European Society of Coloproctology, NIHR Academy, Sarcoma UK, Vascular Society for Great Britain and Ireland, and Yorkshire Cancer Research

    Twelve-month observational study of children with cancer in 41 countries during the COVID-19 pandemic

    Get PDF
    Introduction Childhood cancer is a leading cause of death. It is unclear whether the COVID-19 pandemic has impacted childhood cancer mortality. In this study, we aimed to establish all-cause mortality rates for childhood cancers during the COVID-19 pandemic and determine the factors associated with mortality. Methods Prospective cohort study in 109 institutions in 41 countries. Inclusion criteria: children &lt;18 years who were newly diagnosed with or undergoing active treatment for acute lymphoblastic leukaemia, non-Hodgkin's lymphoma, Hodgkin lymphoma, retinoblastoma, Wilms tumour, glioma, osteosarcoma, Ewing sarcoma, rhabdomyosarcoma, medulloblastoma and neuroblastoma. Of 2327 cases, 2118 patients were included in the study. The primary outcome measure was all-cause mortality at 30 days, 90 days and 12 months. Results All-cause mortality was 3.4% (n=71/2084) at 30-day follow-up, 5.7% (n=113/1969) at 90-day follow-up and 13.0% (n=206/1581) at 12-month follow-up. The median time from diagnosis to multidisciplinary team (MDT) plan was longest in low-income countries (7 days, IQR 3-11). Multivariable analysis revealed several factors associated with 12-month mortality, including low-income (OR 6.99 (95% CI 2.49 to 19.68); p&lt;0.001), lower middle income (OR 3.32 (95% CI 1.96 to 5.61); p&lt;0.001) and upper middle income (OR 3.49 (95% CI 2.02 to 6.03); p&lt;0.001) country status and chemotherapy (OR 0.55 (95% CI 0.36 to 0.86); p=0.008) and immunotherapy (OR 0.27 (95% CI 0.08 to 0.91); p=0.035) within 30 days from MDT plan. Multivariable analysis revealed laboratory-confirmed SARS-CoV-2 infection (OR 5.33 (95% CI 1.19 to 23.84); p=0.029) was associated with 30-day mortality. Conclusions Children with cancer are more likely to die within 30 days if infected with SARS-CoV-2. However, timely treatment reduced odds of death. This report provides crucial information to balance the benefits of providing anticancer therapy against the risks of SARS-CoV-2 infection in children with cancer
    corecore