78 research outputs found
Are "EIT Waves" Fast-Mode MHD Waves?
We examine the nature of large-scale, coronal, propagating wave fronts (``EIT
waves'') and find they are incongruous with solutions using fast-mode MHD
plane-wave theory. Specifically, we consider the following properties:
non-dispersive single pulse manifestions, observed velocities below the local
Alfven speed, and different pulses which travel at any number of constant
velocities, rather than at the ``predicted'' fast-mode speed. We discuss the
possibility of a soliton-like explanation for these phenomena, and show how it
is consistent with the above-mentioned aspects.Comment: to be published in the Astrophysical Journa
Study of Time Evolution of Thermal and Non-Thermal Emission from an M-Class Solar Flare
We conduct a wide-band X-ray spectral analysis in the energy range of 1.5-100
keV to study the time evolution of the M7.6 class flare of 2016 July 23, with
the Miniature X-ray Solar Spectrometer (MinXSS) CubeSat and the Reuven Ramaty
High Energy Solar Spectroscopic Imager (RHESSI) spacecraft. With the
combination of MinXSS for soft X-rays and RHESSI for hard X-rays, a non-thermal
component and three-temperature multi-thermal component -- "cool" (
3 MK), "hot" ( 15 MK), and "super-hot" ( 30 MK) -- were
measured simultaneously. In addition, we successfully obtained the spectral
evolution of the multi-thermal and non-thermal components with a 10 s cadence,
which corresponds to the Alfv\'en time scale in the solar corona. We find that
the emission measures of the cool and hot thermal components are drastically
increasing more than hundreds of times and the super-hot thermal component is
gradually appearing after the peak of the non-thermal emission. We also study
the microwave spectra obtained by the Nobeyama Radio Polarimeters (NoRP), and
we find that there is continuous gyro-synchrotron emission from mildly
relativistic non-thermal electrons. In addition, we conducted a differential
emission measure (DEM) analysis by using Atmospheric Imaging Assembly (AIA)
onboard the Solar Dynamics Observatory (SDO) and determine that the DEM of cool
plasma increases within the flaring loop. We find that the cool and hot plasma
components are associated with chromospheric evaporation. The super-hot plasma
component could be explained by the thermalization of the non-thermal electrons
trapped in the flaring loop.Comment: 20 pages, 12 figures, 1 tables. Accepted for publication in Ap
Comparison of Solar Fine Structure Observed Simultaneously in Ly-{\alpha} and Mg II h
The Chromospheric Lyman Alpha Spectropolarimeter (CLASP) observed the Sun in
H I Lyman-{\alpha} during a suborbital rocket flight on September 3, 2015. The
Interface Region Imaging Telescope (IRIS) coordinated with the CLASP
observations and recorded nearly simultaneous and co-spatial observations in
the Mg II h&k lines. The Mg II h and Ly-{\alpha} lines are important
transitions, energetically and diagnostically, in the chromosphere. The
canonical solar atmosphere model predicts that these lines form in close
proximity to each other and so we expect that the line profiles will exhibit
similar variability. In this analysis, we present these coordinated
observations and discuss how the two profiles compare over a region of quiet
sun at viewing angles that approach the limb. In addition to the observations,
we synthesize both line profiles using a 3D radiation-MHD simulation. In the
observations, we find that the peak width and the peak intensities are well
correlated between the lines. For the simulation, we do not find the same
relationship. We have attempted to mitigate the instrumental differences
between IRIS and CLASP and to reproduce the instrumental factors in the
synthetic profiles. The model indicates that formation heights of the lines
differ in a somewhat regular fashion related to magnetic geometry. This
variation explains to some degree the lack of correlation, observed and
synthesized, between Mg II and Ly-{\alpha}. Our analysis will aid in the
definition of future observatories that aim to link dynamics in the
chromosphere and transition region.Comment: Accepted by Ap
Coronal Shock Waves, EUV waves, and their Relation to CMEs. II. Modeling MHD Shock Wave Propagation Along the Solar Surface, Using Nonlinear Geometrical Acoustics
We model the propagation of a coronal shock wave, using nonlinear geometrical
acoustics. The method is based on the Wentzel-Kramers-Brillouin (WKB) approach
and takes into account the main properties of nonlinear waves: i) dependence of
the wave front velocity on the wave amplitude, ii) nonlinear dissipation of the
wave energy, and iii) progressive increase in the duration of solitary shock
waves. We address the method in detail and present results of the modeling of
the propagation of shock-associated extreme-ultraviolet (EUV) waves as well as
Moreton waves along the solar surface in the simplest solar corona model. The
calculations reveal deceleration and lengthening of the waves. In contrast,
waves considered in the linear approximation keep their length unchanged and
slightly accelerate.Comment: 15 pages, 7 figures, accepted for publication in Solar Physic
Analysis of a global Moreton wave observed on October 28, 2003
We study the well pronounced Moreton wave that occurred in as- sociation with
the X17.2 are/CME event of October 28, 2003. This Moreton wave is striking for
its global propagation and two separate wave centers, which implies that two
waves were launched simultane- ously. The mean velocity of the Moreton wave,
tracked within different sectors of propagation direction, lies in the range of
v ~ 900-1100 km/s with two sectors showing wave deceleration. The perturbation
profile analysis of the wave indicates amplitude growth followed by amplitude
weakening and broadening of the perturbation profile, which is con- sistent
with a disturbance first driven and then evolving into a freely propagating
wave. The EIT wavefront is found to lie on the same kinematical curve as the
Moreton wavefronts indicating that both are different signatures of the same
physical process. Bipolar coronal dim- mings are observed on the same opposite
East-West edges of the active region as the Moreton wave ignition centers. The
radio type II source, which is co-spatially located with the first wave front,
indicates that the wave was launched from an extended source region (& 60 Mm).
These findings suggest that the Moreton wave is initiated by the CME expanding
flanks.Comment: accepted to Ap
First Detection of Lyman-Alpha Scattering Polarization in Off-limb Spicules and Its Constraint on Their Magnetic Field
No abstract availabl
Optical Alignment of the Chromospheric Lyman-Alpha SpectroPolarimeter using Sophisticated Methods to Minimize Activities under Vacuum
The Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) is a sounding-rocket instrument developed at the National Astronomical Observatory of Japan (NAOJ) as a part of an international collaboration. The in- strument main scientific goal is to achieve polarization measurement of the Lyman-alpha line at 121.56 nm emitted from the solar upper-chromosphere and transition region with an unprecedented 0.1% accuracy. For this purpose, the optics are composed of a Cassegrain telescope coated with a "cold mirror" coating optimized for UV reflection and a dual-channel spectrograph allowing for simultaneous observation of the two orthogonal states of polarization. Although the polarization sensitivity is the most important aspect of the instrument, the spatial and spectral resolutions of the instrument are also crucial to observe the chromospheric features and resolve the Ly- pro les. A precise alignment of the optics is required to ensure the resolutions, but experiments under vacuum conditions are needed since Ly-alpha is absorbed by air, making the alignment experiments difficult. To bypass this issue, we developed methods to align the telescope and the spectrograph separately in visible light. We will explain these methods and present the results for the optical alignment of the CLASP telescope and spectrograph. We will then discuss the combined performances of both parts to derive the expected resolutions of the instrument, and compare them with the flight observations performed on September 3rd 2015
CLASP Constraints on the Magnetization and Geometrical Complexity of the Chromosphere-Corona Transition Region
The Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) is a suborbital
rocket experiment that on 3rd September 2015 measured the linear polarization
produced by scattering processes in the hydrogen Ly- line of the solar
disk radiation, whose line-center photons stem from the chromosphere-corona
transition region (TR). These unprecedented spectropolarimetric observations
revealed an interesting surprise, namely that there is practically no
center-to-limb variation (CLV) in the line-center signals. Using an
analytical model, we first show that the geometrical complexity of the
corrugated surface that delineates the TR has a crucial impact on the CLV of
the and line-center signals. Secondly, we introduce a statistical
description of the solar atmosphere based on a three-dimensional (3D) model
derived from a state-of-the-art radiation magneto-hydrodynamic simulation. Each
realization of the statistical ensemble is a 3D model characterized by a given
degree of magnetization and corrugation of the TR, and for each such
realization we solve the full 3D radiative transfer problem taking into account
the impact of the CLASP instrument degradation on the calculated polarization
signals. Finally, we apply the statistical inference method presented in a
previous paper to show that the TR of the 3D model that produces the best
agreement with the CLASP observations has a relatively weak magnetic field and
a relatively high degree of corrugation. We emphasize that a suitable way to
validate or refute numerical models of the upper solar chromosphere is by
confronting calculations and observations of the scattering polarization in
ultraviolet lines sensitive to the Hanle effect.Comment: Accepted for publication in The Astrophysical Journal Letter
- …