331 research outputs found

    Suppression of piriform cortex activity in rat by corticotropin-releasing factor 1 and serotonin 2A/C receptors

    Get PDF
    The piriform cortex (PC) is richly innervated by Corticotropin-releasing factor (CRF) and Serotonin (5-HT) containing axons arising from central amygdala and Raphe nucleus. CRFR1 and 5-HT2A/2CRs have been shown to interact in manner where CRFR activation subsequently potentiates the activity of 5-HT2A/2CRs. The purpose of this study was to determine how the activation of CRFR1 and/or 5-HT2Rs modulates PC activity at both the circuit and cellular level. Voltage sensitive dye imaging showed that CRF acting through CRFR1 dampened activation of the layer II of PC and interneurons of endopiriform nucleus. Application of the selective 5-HT2A/CR agonist 2,5-dimethoxy-4-iodoamphetamine (DOI) following CRFR1 activation potentiated this effect. Blocking the interaction between CRFR1 and 5-HT2R with a Tat-CRFR1-CT peptide abolished this potentiation. Application of forskolin did not mimic CRFR1 activity but instead blocked it, while a protein kinase A antagonist had no effect. However, activation and antagonism of protein kinase C (PKC) either mimicked or blocked CRF modulation respectively. DOI had no effect when applied alone indicating that the prior activation of CRFR1 receptors was critical for DOI to show significant effects similar to CRF. Patch clamp recordings showed that both CRF and DOI reduced the synaptic responsiveness of layer II pyramidal neurons. CRF had highly variable effects on interneurons within layer III, both increasing and decreasing their excitability, but DOI had no effect on the excitability of this group of neurons. These data show that CRF and serotonin, acting through both CRFR1 and 5-HT2A/CRs, reduce the activation of the PC. This modulation may be an important blunting mechanism of stressor behaviours mediated through the olfactory cortex

    KLF6 (Kruppel like factor 6)

    Get PDF
    Review on KLF6 (Kruppel like factor 6), with data on DNA, on the protein encoded, and where the gene is implicated

    A dynamic intron retention program enriched in RNA processing genes regulates gene expression during terminal erythropoiesis

    Get PDF
    Differentiating erythroblasts execute a dynamic alternative splicing program shown here to include extensive and diverse intron retention (IR) events. Cluster analysis revealed hundreds of developmentally-dynamic introns that exhibit increased IR in mature erythroblasts, and are enriched in functions related to RNA processing such as SF3B1 spliceosomal factor. Distinct, developmentally-stable IR clusters are enriched in metal-ion binding functions and include mitoferrin genes SLC25A37 and SLC25A28 that are critical for iron homeostasis. Some IR transcripts are abundant, e.g. comprising ∼50% of highly-expressed SLC25A37 and SF3B1 transcripts in late erythroblasts, and thereby limiting functional mRNA levels. IR transcripts tested were predominantly nuclear-localized. Splice site strength correlated with IR among stable but not dynamic intron clusters, indicating distinct regulation of dynamically-increased IR in late erythroblasts. Retained introns were preferentially associated with alternative exons with premature termination codons (PTCs). High IR was observed in disease-causing genes including SF3B1 and the RNA binding protein FUS. Comparative studies demonstrated that the intron retention program in erythroblasts shares features with other tissues but ultimately is unique to erythropoiesis. We conclude that IR is a multi-dimensional set of processes that post-transcriptionally regulate diverse gene groups during normal erythropoiesis, misregulation of which could be responsible for human disease

    Tomato Management Practices and Diseases Occurrence in Mwea West Sub County

    Get PDF
    Tomato is an important crop in Mwea West Sub County, Kirinyaga County, Kenya. A survey was carried out in the area to investigate tomato management practices, diseases and pests that hinder tomato production. The study endeavoured to establish farmers’ knowledge on fusarium wilt disease and root-knot nematodes and the methods used to control them. Data was collected from two hundred and eighteen randomly selected small holder producers who were equally distributed in the study area. Data collected included tomato management practices, diseases and pests that hinder production. Majority (85.3%) of the respondents were males while a few (14.7%) were female. The respondents (71.6%) indicated that tomato was the most important crop grown for income generation in the area. Most important varieties grown were cultivars, Safari, Kilele F1, Prosta F1 and Rio- Grande. Most important diseases affecting tomato crop were; early blight (Alternaria solani) and late blight (Phytophthora infestans), fungal wilts (Fusarium sp. Verticillium sp. Rhizoctonia sp.) and bacterial wilt (Ralstonia solanacearum). Plant parasitic nematodes and pests (thrips, aphids, spider mites) were also reported in the study area. There was a significant(P<0.05) association between the following variables; type of land owner and major use of land, type of land owner and cropping system, source of agricultural information and whether or not to apply pesticides into the soil. Farmers were quite knowledgeable about tomato farming as they had access to information from various sources; however there are still major gaps in knowledge especially on diseases and pests. Keywords: Tomato, diseases, pests, nematodes, managemen

    Regulation and role of the PP2A-B56 holoenzyme family in cancer

    Get PDF
    Protein phosphatase 2A (PP2A) inactivation is common in cancer, leading to sustained activation of pro-survival and growth-promoting pathways. PP2A consists of a scaffolding A-subunit, a catalytic C-subunit, and a regulatory B-subunit. The functional complexity of PP2A holoenzymes arises mainly through the vast repertoire of regulatory B-subunits, which determine both their substrate specificity and their subcellular localization. Therefore, a major challenge for developing more effective therapeutic strategies for cancer is to identify the specific PP2A complexes to be targeted. Of note, the development of small molecules specifically directed at PP2A-B56α has opened new therapeutic avenues in both solid and hematological tumors. Here, we focus on the B56/PR61 family of PP2A regulatory subunits, which have a central role in directing PP2A tumor suppressor activity. We provide an overview of the mechanisms controlling the formation and regulation of these complexes, the pathways they control, and the mechanisms underlying their deregulation in cancer

    Interactions between Plasmodium falciparum skeleton-binding protein 1 and the membrane skeleton of malaria-infected red blood cells

    Get PDF
    During development inside red blood cells (RBCs), Plasmodium falciparum malaria parasites export proteins that associate with the RBC membrane skeleton. These interactions cause profound changes to the biophysical properties of RBCs that underpin the often severe and fatal clinical manifestations of falciparum malaria. P. falciparum erythrocyte membrane protein 1 (PfEMP1) is one such exported parasite protein that plays a major role in malaria pathogenesis since its exposure on the parasitised RBC surface mediates their adhesion to vascular endothelium and placental syncytioblasts. En route to the RBC membrane skeleton, PfEMP1 transiently associates with Maurer\u27s clefts (MCs), parasite-derived membranous structures in the RBC cytoplasm. We have previously shown that a resident MC protein, skeleton-binding protein 1 (SBP1), is essential for the placement of PfEMP1 onto the RBC surface and hypothesised that the function of SBP1 may be to target MCs to the RBC membrane. Since this would require additional protein interactions, we set out to identify binding partners for SBP1. Using a combination of approaches, we have defined the region of SBP1 that binds specifically to defined sub-domains of two major components of the RBC membrane skeleton, protein 4.1R and spectrin. We show that these interactions serve as one mechanism to anchor MCs to the RBC membrane skeleton, however, while they appear to be necessary, they are not sufficient for the translocation of PfEMP1 onto the RBC surface. The N-terminal domain of SBP1 that resides within the lumen of MCs clearly plays an essential, but presently unknown role in this process

    Comment on PP2A inhibition sensitizes cancer stem cells to ABL tyrosine kinase inhibitors in BCR-ABL human leukemia

    Get PDF
    LB100 does not sensitize CML stem cells to tyrosine kinase inhibitor–induced apoptosis
    • …
    corecore