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A B S T R A C T   

Protein phosphatase 2A (PP2A) inactivation is common in cancer, leading to sustained activation of pro-survival 
and growth-promoting pathways. PP2A consists of a scaffolding A-subunit, a catalytic C-subunit, and a regula
tory B-subunit. The functional complexity of PP2A holoenzymes arises mainly through the vast repertoire of 
regulatory B-subunits, which determine both their substrate specificity and their subcellular localization. 
Therefore, a major challenge for developing more effective therapeutic strategies for cancer is to identify the 
specific PP2A complexes to be targeted. Of note, the development of small molecules specifically directed at 
PP2A-B56α has opened new therapeutic avenues in both solid and hematological tumors. Here, we focus on the 
B56/PR61 family of PP2A regulatory subunits, which have a central role in directing PP2A tumor suppressor 
activity. We provide an overview of the mechanisms controlling the formation and regulation of these complexes, 
the pathways they control, and the mechanisms underlying their deregulation in cancer.   

1. Introduction 

Dynamic protein phosphorylation is a post-translational modifica
tion with an essential role in the regulation of a variety of indispensable 
cellular processes for the maintenance of normal homeostasis, such as 
proliferation, apoptosis, and differentiation [1]. Protein phosphoryla
tion is a highly controlled and regulated process that requires the co
ordinated and temporal regulation of both protein kinase and 
phosphatase function. Dysregulation of this balance underlies the 
pathogenesis of many human diseases, including cancer [2]. Multiple 
cellular signaling cascades are regulated by phosphorylation events, and 
modifications in the phosphorylation state of proteins enable cells to 
rapidly adapt to both changes in extracellular and intracellular cues. In 
most cases, a phosphate group is covalently bound or removed from 
serine (Ser), threonine (Thr), or tyrosine (Tyr) amino acid residues and, 
to a lesser extent, from histidine, lysine, or arginine. Although the 

number of kinases is far larger than phosphatases, the structure of 
phosphatase complexes allows a single catalytic subunit to form hun
dreds of distinct holoenzymes creating a larger repertoire of protein 
phosphatases [3,4]. 

Phosphatases are divided into four main classes based on their amino 
acid substrate specificity: Ser/Thr phosphatases, Tyr phosphatases, dual 
specificity phosphatases, and histidine phosphatases [3–5]. The major
ity of Ser/Thr dephosphorylation is performed by ten catalytic subunits 
that constitute the family of Phosphoprotein Phosphatases (PPPs): 
PP1α/β/γ, PP2Acα/β, PP2Bc, PP4c, PP5c, PP6c, and PP7c [4]. PP1α/β/γ 
catalytic subunits bind to regulatory subunits to form heterodimers, 
while PP2Acα/β, PP4c, and PP6c form mostly heterotrimers with regu
latory and scaffolding subunits [6]. Holoenzyme formation is tightly 
regulated through various mechanisms, including subunit post- 
translational modifications, to ensure that the appropriate repertoire 
of PPPs is present in cells to catalyze specific dephosphorylation events. 
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The very end C-terminus of PP2Acα/β, PP4c, and PP6c are closely 
related and highly conserved from yeast to humans, and this region is 
involved in the regulation and biogenesis through distinct post- 
translational modifications such as phosphorylation and methylation 
of the C-terminal tail of the catalytic subunit [4]. 

Numerous studies have focused on the study of aberrant kinase ac
tivity in cancer. Although phosphatases are also essential to maintain 
cell homeostasis, their role in cancer has not been fully considered until 
recently. PP2A (protein phosphatase 2A) comprises a scaffolding A- 
subunit, a catalytic C-subunit, and a regulatory B-subunit. The func
tional complexity and specificity of PP2A mainly emerge via the exis
tence of a repertoire of regulatory B-subunits, which determine both the 
substrate and subcellular localization of the heterotrimeric PP2A com
plex. Of importance, PP2A is inactivated in numerous solid and hema
tological tumors and its tumor suppressor function is mainly regulated 
by two of the four families of regulatory B-subunits: B55 and B56. The 
role and regulation of B55/PR55 family members in cancer have been 
recently reviewed [7,8]. Here, we will focus on the members of the B56/ 
PR61 family of regulatory PP2A subunits. We will provide an overview 
of the mechanisms controlling the assembly and regulation of the PP2A- 
B56 complexes. We then will systematically discuss the main PP2A-B56 
direct substrates, the pathways they control, and their deregulation in 
cancer. Of note, the recent development of small molecules targeting 
specific PP2A holoenzymes, such as PP2A-B56α, has emerged as a tool to 
determine new functions of PP2A and has opened up new therapeutic 
opportunities in cancer. 

2. Protein phosphatase 2A (PP2A) 

One of the major constituents of the total cellular Ser/Thr phos
phatase pool in mammalian cells is the highly conserved and ubiqui
tously expressed protein PP2A. PP2A regulates a wide variety of cellular 
processes, such as cell cycle, proliferation, differentiation, DNA damage 
response, stress response, cell adhesion and mobility, and apoptosis [9]. 
Moreover, PP2A is a tumor suppressor that counteracts most of the 
kinase-driven intracellular signaling pathways underlying normal 
physiology as well as the pathobiology of cancer and other diseases 
[10,11]. 

2.1. Structure of the PP2A holoenzymes 

PP2A is a family of holoenzymes that exist in two different forms: as 
dimers and trimers [12]. The dimeric form known as the core enzyme 
consists of a scaffold A-subunit and a catalytic C-subunit. In humans, A- 
and C-subunits are each encoded by two different genes, giving rise to 
two isoforms: PPP2R1A/PR65α/Aα and PPP2R1B/PR65β/Aβ for scaf
fold subunit; and PPP2CA/PP2Acα and PPP2CB/PP2Acβ for the catalytic 
subunit. Each heterotrimeric enzyme is composed of the core AC-dimer 
and a structurally distinct regulatory B-subunit, which determine the 
substrate specificity [13]. For the B-subunits, 15 human genes have been 
described, giving rise to over 40 different isoforms that are sorted into 
four families: B/B55/PR55, B′/B56/PR61, B′′/PR72/PR70, and B′′′/ 
STRN/PR110/PR93 (Fig. 1A). From each family different isoforms have 
been identified: B55 (α, β, γ, δ), B56 (α, β, γ, δ, ε), PR (PR72/130, PR70/ 
48, G5PR), and STRN (STRN, STRN3, STRN4) (Supplementary Table 1) 
[11,14,15]. Some of these isoforms also have different splicing variants. 
Although A- and C-subunits show remarkable sequence conservation 
among eukaryotic organisms, the distinct B-subunit genes are hetero
geneous and exhibit very little sequence similarity across each family 
[5]; in contrast to the isoforms within each family which share signifi
cant sequence similarity. Structural studies of the B55, B56, PR72/PR70, 
and STRN3 regulatory subunits in the context of their trimeric holoen
zymes have revealed divergent structures, which are consistent with 
their divergent sequences (Supplementary Fig. 1) [16–19]. Interestingly, 
the sequence variations in B56 family members mainly reside at the 
interface where the A- and B-subunits interact in the assembled PP2A 

complex [20]. A- and C-subunits are expressed in all tissues, with the 
expression of the Aα and Cα isoforms predominating in most cell types, 
while Aβ expression is only elevated during early development in ver
tebrates [11]. The expression levels of different B-subunits, on the other 
hand, are extremely variable depending on the cell, tissue, and devel
opmental context (Fig. 1B). Together, more than 80 distinct hetero
trimeric holoenzymes of PP2A account for 50% to 70% of the total Ser/ 
Thr phosphatase activity in eukaryotic cells [9,11,21]. Thus, PP2A is not 
a single entity but a family of heterotrimeric holoenzymes with context- 
dependent functions. 

2.2. Mechanism and regulation of the active PP2A holoenzymes assembly 

PP2A is required for the appropriate function of a wide variety of 
biological processes; therefore, its stability and activity are regulated by 
multiple post-translational modifications and interacting proteins, 
which ensure that the appropriate repertoire of PP2A complexes is 
present in cells to maintain exquisitely tightly controlled and regulated 
enzymatic activity. Here we will focus on the aspects that regulate the 
formation of the PP2A-B56 complexes. 

To prevent the formation of catalytically active complexes that lack 
the correct substrate specificity, holoenzyme assembly is tightly regu
lated [22]. During PP2A biogenesis, the phosphotyrosyl phosphatase 
activator (PTPA) interacts with the C-terminus of the monomeric C- 
subunit [23], inducing conformational and biochemical changes that 
activate the C-subunit prior to A-subunit binding and dimer formation 
(Fig. 2A). Thus, PTPA functions as an ATP-dependent chaperone to 
enhance PP2A biogenesis [6]. Unpartnered C-subunit is directed to 
ubiquitination and proteasome degradation. The precise function of the 
AC-dimer in cell signaling remains unclear, but it serves as a readily 
available pool for the assembly of different heterotrimers in response to 
both extracellular and intracellular cues. C-terminal HEAT repeats of the 
PP2A A-subunit contact the catalytic subunit, while N-terminal HEAT 
repeats mediate contacts with the various regulatory B-subunits [20]. 
Importantly, the phosphorylation and methylation of the C-terminal tail 
of the PP2A-C subunit modulate the formation of specific B-containing 
heterotrimers (Fig. 2B). 

Phosphorylation events at this same C-terminal tail inhibit the 
interaction of PP2A-C with PTPA and also play an essential role in 
directing B-subunit binding and therefore in regulating the enzymatic 
activity of PP2A [24]. Phospho-mimetic mutants at Thr304 result in the 
disruption of B55 subunit binding to the AC-core enzyme [24,25]. In 
fact, this phosphorylation event is essential during mitosis, through its 
ability to regulate B55 subunit binding [26,27]. On the other hand, the 
functional implications of Tyr307 phosphorylation have not been suf
ficiently elucidated as a result of the lack of specific antibodies to this 
post-translational modification [28,29]. 

Reversible methylation of leucine 309 (Leu309) in the C-subunit is a 
critical regulator of PP2A biogenesis and modification of this residue 
drives biased PP2A heterotrimer formation, and changes in carbox
ymethylation are highly dependent on cellular context and stimuli 
[6,30,31]. This methylation event is catalyzed by the leucine carboxyl 
methyltransferase-1 (LCMT-1), while demethylation is performed by the 
protein phosphatase methylesterase-1 (PME-1) (Fig. 2A). Methylation 
removes the negative charge of the C-terminal tail of the catalytic sub
unit, thereby stabilizing the C-subunit and facilitating its docking into an 
acidic groove between the A- and B-subunits [13]. Additionally, PME-1 
binding reduces PP2A activity through a rearrangement of the PP2A-C 
active site and displacement of the two divalent cations, which are 
required for the catalysis of the dephosphorylation reaction [32]. 

Deletion of the C-terminal leucine (ΔL309 mutation) of PP2A is 
frequently used as a mimetic of the unmethylated form. This approach 
together with CRISPR/Cas9 models knocking out LCMT-1, and the use of 
mass spectrometry-based proteomics approaches combined with affinity 
enrichments have allowed the study of the specific implications of this 
post-translational modification on the regulation of PP2A complex 
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Fig. 1. PP2A holoenzymes and subunits. (A) The PP2A core enzyme is composed of the A- and C-subunits. This dimer can bind distinct PP2A regulatory subunits 
from the four B regulatory families (B55, B56, PR, and STRN). Between the different families of B-subunits there is very little sequence similarity. B-subunits are 
responsible for the substrate specificity and subcellular localization of the PP2A heterocomplex. (Figure created in BioRender.com). (B) Heatmap representation of 
the reads per kilobase of transcript per million mapped reads (RPMK) of genes coding for PP2A subunits in different human tissues. Data recapitulated from Gene 
NCBI database (2018). 
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assembly formation. The binding of the C-subunit to the Aα and Aβ 
scaffolding subunits is reduced approximately 4-fold and 2-fold, 
respectively, when the C-subunit is unmethylated [26]. However, the 
most important characteristic of this modification is its role in enhancing 
or diminishing the binding of specific B-subunits to the core enzyme 
dimer. B55 subunits strongly rely on C-terminal methylation for holo
enzyme formation [26]. B56 subunits can interact with methylated and 
unmethylated PP2A-C, although methylation promotes their association 
[24]; however, recent results suggest that Leu309 methylation enhances 
the binding of the B56α/ε subunits more specifically. Upon ΔL309 
mutation, B56α and B56ε binding were reduced by 32-fold and 11-fold, 
respectively, while B56γ and B56δ were reduced by only 2-fold in 
binding [26,33]. This difference in subunit binding is consistent with 
unique amino acid sequence motifs in the C-terminal tail that distin
guishes the B56α/β/ε versus B56γ/δ isoforms [34], making the later 
ones more methyl-sensitive. Thus, specific B55 and B56 regulatory 
subunits are preferentially bound to methylated PP2A-C and their sta
bility is altered when not bound to the core AC dimer [24,26]. In 
mammalian cells, 70-90% of PP2A-C is methylated [35]. Interestingly, 
PP2A-B55 holoenzymes tend to oppose proline-directed kinases while 
PP2A-B56 heterotrimers oppose basophilic kinases [36]. Therefore, 
changes in methylation affect the repertoire of holoenzymes that are 
formed and therefore the pathways that PP2A controls. Future studies 
are needed to determine which phosphorylation sites are specifically 
sensitive to these changes and to identify downstream signaling path
ways that are distinctly regulated. Additionally, post-translational 
modifications of B-subunits can affect the activity and subcellular 
localization of PP2A, influencing which substrate proteins are targeted. 

2.3. PP2A inhibitors 

PP2A activity is also modulated by several endogenous inhibitors. 
ANP32A (I1PP2A, Inhibitor 1 of PP2A) and SET (I2PP2A, Inhibitor 2 of 
PP2A) bind to the C-subunit, impeding its activity, while others specif
ically bind and inhibit PP2A-B55 (ARPP19 and ENSA) or PP2A-B56 
heterocomplexes (CIP2A and BOD1) [8]. Here we will focus on PP2A 
inhibitors that regulate C-subunit activity and PP2A-B56 holoenzymes. 

ANP32A and SET are two potent stable PP2A inhibitors. Both pro
teins directly bind and inhibit the C-subunit of PP2A. Their localization, 
as well as their binding to PP2A and their inhibitory activity, are 
modulated by phosphorylation [13]. SET is usually localized to the 
nucleus; however, its phosphorylation by kinases such as CK2 and PI3K 
facilitates SET shuttling to the cytoplasm and increases its ability to bind 
and inactivate PP2A [37,38]. Moreover, there are cytoplasmic proteins 
that stabilize SET binding to the PP2A C-subunit such as SETBP1 and 
p38β [38,39]. ANP32A modulates the PP2A-dependent dephosphory
lation of the Tau protein, whereas SET controls numerous substrates 
involved in cancer, including ERK, AKT, MYC, PTEN, and MCL1, 
through the binding and inhibition of PP2A [13]. Recent studies indicate 
that SET could be predominantly associated with PP2A-B56 hetero
complexes in cancer [40]. 

CIP2A (Cancerous Inhibitor of PP2A) directly binds to PP2A-B56α, 
displacing the PP2A A-subunit and thereby hijacking both the B56α and 
the catalytic PP2A C-subunit to form a CIP2A-B56α-PP2Ac pseudo
trimer, muting the B56α substrate recognition site [41,42]. BOD1 has 
been identified as a specific inhibitor of PP2A-B56 holoenzyme during 
mitosis. PP2A-B56 regulates the phosphorylation balance at 

Fig. 2. PP2A assembly process and regulation. (A) Monomeric PP2A C-subunit needs to be activated by PTPA before dimerization with the scaffold A-subunit. 
Methylation of the C-subunit at the C-carboxyl terminus by LCMT-1 facilitates the binding of methylation-sensitive B-subunits such as B55α, B56α, B56β, and B56ε. 
Methylation is a reversible process and PME-1 is responsible for demethylation of the C-subunit which promotes the binding of methylation-independent B-subunits, 
such as those of the STRN family. (B) Detail of the very end C-terminal region of PP2A C-subunit where several residues can be modified to modulate complex 
activity. Thr304 and Tyr307 can be phosphorylated and Leu309 can be methylated (Figure created in BioRender.com). 
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kinetochore-microtubule attachments, and PP2A-B56 inhibition by 
BOD1 is required to maintain proper chromosomal alignment [43]. 

Aside from PP2A endogenous inhibitors, during the last decades 
compounds such as okadaic acid, calyculin A, or microcysteine have 
been essential for mimicking PP2A inhibition in diverse models. 
Nevertheless, these compounds have demonstrated to be poor specific, 
due to their ability to inhibit PP1 and PP6 catalytic subunits apart of 
PP2A C-subunit depending on the doses used or the substrates studied 
[44,45]. Currently, during the process of complex-specific PP2A acti
vators generation, inactive analogs have also emerged. One example is 
the TRC-766 compound, which is structurally similar to the PP2A-B56α 
activator DT-061 but biologically inactive [46]. 

3. The B56 family of β-subunits 

B56- and B55-containing PP2A complexes direct most of the tumor 
suppressive phosphatase activity in signaling pathways associated with 
cell growth, proliferation, metabolism, differentiation, and apoptosis. 
Furthermore, PP2A-B56 heterocomplexes regulate circadian rhythms, 
activation of important transcription factors, and the cell cycle. Of note, 
some of B55 and B56 functions overlap and therefore, some substrates 
can be dephosphorylated by PP2A complexes containing members from 
these two families. Here, we will focus on the regulation and functions of 
the B56 family specifically. 

The B56 family is comprised of 5 members coded by 5 different genes 
in humans and mice: B56α (PPP2R5A), B56β (PPP2R5B), B56γ 
(PPP2R5C), B56δ (PPP2R5D), and B56ε (PPP2R5E). B56γ and B56δ have 
3 alternative splicing isoforms, and B56ε has an alternative translation 
isoform [47,48]. Members of the B56 family show a distinct spatial 
distribution within the cell with B56α, B56β, and B56ε being predomi
nantly localized to the cytoplasm, while B56γ is mainly found in the 
nucleus [49]. B56 subunits are structurally composed of 8 HEAT-like 
repeats similar to the scaffold A-subunits and show little or no similar
ity to any of the other B-subunit families. In PP2A-B56 complexes, the 
surface of B56 subunits makes extensive interactions with the scaffold A- 
subunit and orients the B-subunit towards the active site of the catalytic 
subunit [20]. 

Interestingly, B56 subunits work together to regulate specific func
tions. Knockout of the PPP2R5C and PPP2R5D genes in mice demon
strates a strong functional association between these two regulatory 
subunits: only mice with both genes inactivated have fetal development 
arrested due as a result of cardiac development problems [50]. Of note, 
these proteins have the most related peptide sequences among the B56 
family. This suggests that there is a level of functional redundancy be
tween members of the B56 family, although further studies are needed 
to fully clarify this. 

3.1. Post-translational modifications of the B56-subunits 

B56 proteins can be directly modified by phosphorylation and 
nitrosylation, two post-translational modifications that highly impact 
the activity of the PP2A holoenzyme. As processes in cells are bidirec
tional, kinases can phosphorylate B56 subunits, modulating positively or 
negatively the activity of PP2A-B56. As an example, ERK phosphorylates 
the B56γ subunit at Ser327, which is a well-conserved residue between 
B56 family members, resulting in the dissociation of the B-subunit from 
the PP2A holoenzyme thereby reducing the amount of phosphatase ac
tivity available to counteract MAPK signaling [51]. B56α can also be 
phosphorylated at Ser41 by PKC, reducing PP2A enzymatic activity 
[52]. Conversely, PKA-mediated phosphorylation of B56δ enhances the 
phosphatase activity of the PP2A holoenzyme containing this B-subunit 
[53]. Phosphorylation of B56 subunits can be also linked with their 
specific localization. PKR phosphorylates B56α at Ser28, promoting the 
mitochondrial localization of the PP2A-B56α complex [54]. Moreover, 
nitrosylation of B-subunits inhibits phosphatase activity and induces 
conformational changes transmitted between the heterotrimer subunits 

that affect catalytic activity [8]. 

3.2. PP2A-B56 substrate recognition 

Regulatory B-subunits recognize specific PP2A substrates. The B56- 
binding motifs that determine PP2A substrate specificity are short 
linear motifs (SLiMs). These motifs are found in the intrinsically disor
dered domains of the substrates, which are long and highly conserved 
regions present in essential proteins. In the last few years, the identifi
cation of these SLiM motifs has been useful for the identification of new 
PP2A B56 substrates. LxxIxE motifs (where x is any amino acid) were 
suggested as preferred docking site for the B56 subunits [36,55]. SLiMs 
can be modified in positions 1 and 4, altering the binding affinity and 
biasing the substrate recognition for distinct B56 subunits. For example, 
the Lxx[IVL]xE sequence motif presents higher affinity for B56α, [LMFI] 
xx[IVL]xE for B56γ, and [LM]xx[ILV]xE for B56ε holoenzymes [56]. 
Additionally, the presence of phosphorylated or acidic negatively 
charged residues such as aspartic and glutamic acids at positions 2, 7, 8, 
and 9 enhance B56 binding [55,57]. A list of B56 family substrates is 
provided in Table 1 along with their corresponding predictive SLiMs. 
Interestingly, it has been reported that some PP2A-B56 substrates pre
sent no SLiM sequences but are also directly dephosphorylated by PP2A- 
B56 complexes. In these cases, an adaptor or mediator protein, which 
contains the SLiM for PP2A-B56 recognition is needed. When the PP2A- 
B56 complex is bound, dephosphorylation of the mediator protein and of 
other bound proteins might occur [55]. These scaffold proteins act to 
both coordinate PP2A binding to its targets and help to direct PP2A 
holoenzyme activity. It was initially reported that cyclin G recruited 
PP2A to dephosphorylate MDM2, and this mechanism was confirmed 
with the identification of the PP2A-B56α holoenzyme as part of the Axin 
complex [58,59]. 

3.3. Direct substrates of the PP2A-B56 holoenzymes 

Next, we will describe the main substrates of the PP2A-B56 holo
enzymes and discuss the role of PP2A-containing B56 complexes in the 
regulation of signaling pathways frequently altered in cancer. 

3.3.1. The ERK signaling cascade 
ERK1 and ERK2 proteins are downstream components of the 

mitogen-activated protein kinase (MAPK) pathway that regulates cell 
proliferation, differentiation, and apoptosis. MAPKs are arranged ac
cording to the stimulus that activates them: ERK1/2 are activated 
mainly by mitogens, while JNK and p38 are activated by stress stimuli. 
Notably, PP2A complexes regulate all these signal transduction cascades 
[60,61], and mediate the crosstalk between them [62], indicating why 
specificity and regulation of the distinct B-subunits are of utmost 
significance. 

We and others have demonstrated that ERK1/2 dephosphorylation at 
Thr202/Tyr204 is performed by the PP2A-B56α heterocomplex [63,64]. 
ERK1/2 dysregulation contributes to distinct human diseases, including 
cancer. When active, ERK1/2 phosphorylate several proteins such as 
MYC and MCL1, enhancing their stability. Accordingly, PP2A reac
tivation in cancer cells inactivates ERK1/2, promoting cancer cell death 
[63,64]. Interestingly, IER3 (IEX-1) binds to ERK and B56 subunits 
independently, enhancing B56 phosphorylation by ERK at a conserved 
Ser/Pro site, and triggering B56 subunits dissociation from the PP2A 
catalytic subunit [51]. This creates a positive regulatory loop where ERK 
may inhibit PP2A-B56 family function (Fig. 3). Of note, IER3 is over
expressed in KRAS-mutant pancreatic tumor cells inhibiting PP2A ac
tivity and sustaining ERK1/2 activation [65]. 

Although it has not been clarified yet which specific PP2A B-subunit 
regulates other members of the MAPK pathway, in vitro and in vivo 
studies show that MEK1/2 kinases are PP2A substrates inactivated by 
dephosphorylation [62,66]. Reactivation of the tumor suppressor ac
tivity of PP2A efficiently inhibits RAS-driven tumorigenesis and 

I. Peris et al.                                                                                                                                                                                                                                     



BBA - Reviews on Cancer 1878 (2023) 188953

6

synergizes with pharmaceutical agents targeting MEK1/2 [67,68]. 
Indeed, PP2A A-subunit mutations confer resistance to MEK inhibitors, 
pointing out the importance of PP2A in MEK/ERK regulation [69]. 

Interestingly, studies in ovarian and endometrial cancer establish 
that JNK signaling is over-activated when PP2A A-subunit mutations 
that impair the binding of all B56 family members, except B56δ are 
present [70]. Regarding p38, there is evidence about both tumor sup
pressor and tumor promoter functions depending on cellular context 
[71]. We have previously reported that p38β potentiates PP2A inacti
vation by two mechanisms: facilitating the cytoplasmic translocation of 
SET through CK2 phosphorylation, and directly binding to and stabi
lizing the SET oncoprotein in the cytoplasm [38]. In contrast, after 
NOX4 activation or apoptosis induction, p38 mediates PP2A C-subunit 
activation, promoting MEK1/2 and ERK1/2 inactivation and contrib
uting to the induction of apoptosis [72]. Further research is needed to 
determine p38 kinase cell type and cell context-specific functions. 

Notably, the B55 family has also a significant role positive and 
negatively regulating MEK-ERK pathway [7]. PP2A-B55 de
phosphorylates KSR1, the kinase suppressor of Ras 1, upon growth 
factor stimulation activating the MAPK cascade [73]. Contrary, PP2A- 
B55 can also dephosphorylate MEKK3 on its Ser526 inhibiting this ki
nase [74]. This points out the complex interplay between the different B- 
subunit families. 

3.3.2. The AKT pathway 
PI3K/AKT axis forms a key component of many signaling pathways 

that regulate a wide variety of cellular functions including cell prolif
eration, survival, metabolism, and angiogenesis in both normal and 
malignant cells. Mutations in the PI3K subunit genes and PTEN deletions 

represent some of the most common mutations in multiple types of 
cancers. The PI3K/AKT signaling pathway is activated in response to 
stimuli such as insulin, growth factors, or cytokines. Interestingly, lack 
of PP2A-C Leu309 methylation, and consequently, fewer B56- and B55- 
PP2A complexes, favor enhanced cell transformation due to AKT acti
vation by phosphorylation of its Thr308 and Ser473 residues [75]. 
PP2A-B55 directly dephosphorylates Thr308 and inactivates AKT, 
resulting in the inhibition of cell growth and survival [76]. However, 
PP2A-B56 complexes can also dephosphorylate AKT at Thr308 and 
Ser473 (Fig. 4) [77,78]. The specific B56 subunits involved in these 
dephosphorylation events seem to be context-dependent: PP2A-B56γ 
regulates both AKT phosphorylation sites in hepatocellular carcinoma 
[79], while PP2A-B56β removes the phosphate groups upon insulin- 
induced response [80,81]. 

AKT proteins also participate in the regulation of the mammalian 
target of rapamycin complex (mTORC) signaling pathway, which is 
involved in the regulation of metabolism regulation and whose function 
is dysregulated in many cancers. AMPK, a cellular energy sensor 
conserved in all eukaryotic cells, is able to inhibit AKT and conse
quently, the mTOR pathway. AMPK phosphorylates B56γ at Ser298 and 
Ser336, enhancing its activity against AKT in breast cancer [82]. 
Moreover, activated mTORC1 induces PP2A-mediated dephosphoryla
tion of the transcription factor FOXK1, which regulates the expression of 
multiple genes associated with glycolysis and downstream anabolic 
pathways [83]. This dephosphorylation event can be carried out by 
B56α, B56β, B56δ, and B56ε, but not B56γ whose phosphorylation de
pends on AMPK [84]. Regarding mTORC1 substrate S6K, its two iso
forms presented in mammalian cells, p85S6K and p70S6K, are regulated 
by B56 subunits at residues Thr412 and Thr389, respectively [85,86]. 

Table 1 
Direct substrates of the PP2A-B56 holoenzymes and their predicted SLiMs.  

Pathway Substrate Residue B56 subunit SLiM References 

MAPK ERK Thr202 B56α 45-LGYIGE-50 [63,64] 
GSK3β Ser9 B56δ 132-LDYVPE-137 [89,90] 
JNK  B56α and B56γ 86-ITALFE-91 [70] 
MAP4K3  B56ε 375-LKSVEE-380; 

567-LNELHE-572 
[87] 

MEK Ser217 and Ser221  93-LQVLHE-98; 
129-LTYLRE-134 

[62,66,190] 

PI3K/AKT AKT Thr308 and Ser 473 B56β, B56γ, and B55α 223-LCFVME-228 [76–78] 
p70S6K Thr389  145-LYLILE-150; 

396-LESVKE-401 
[85,86] 

PTEN Ser380, Thr382, and Thr383  - [191,192] 
FOXK1  B56α, B56β, B56δ, and B56ε 1-MAEVGE-6; 

457-LASVPE-462 
[83] 

Myc regulation MYC Ser62 B56α 99-LEMVTE-104 [59,98,193] 
PIM-1  B56β 116-FVLILE-121; 

130-FDFITE-135; 
148-FWQVLE-153 

[94] 

Apoptosis BCL2 Ser70 B56α 130-FATVVE-135 [64,105,106] 
BCL-XL Ser62  27-FSDVEE-32 [107] 
BAD Ser112  1-MFGIPE-6 [103] 
FOXO3 Ser253  281-MQTIQE-286 [103] 

Wnt/ β-catenin Fam13a Ser322  540-LQPIIE-545; 
552-FKEIKE-557; 
622-IPELLE-627; 
626-LEHLQE-631 

[120] 

β-Catenin Ser33, Ser37, and Thr45 B55α 566-MEEIVE-571 [115–118] 
DNA damage p53 Thr55 B56γ 341-FRELNE-346 [121,123,124] 

BRCA2  B56α 1114-LSTILE-1119 [127] 
MDM2 Ser166 and Thr216  199-LCVIRE-204 [58] 
p300   1145-LSEVFE-1150; 

1652-MCMLVE-1657 
[125] 

Hedgehog GLI3  B56ε 68-LSKVSE-73; 
94-LPHVAE-99; 
741-LSAIDE-746; 
1566-LTSLAE-1571 

[130] 

Others E2F1 Ser364  170-ITNVLE-175; 
210-LRGLG-214; 
231-LRLLSE-235 

[160]  
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Nevertheless, some of these studies have been performed using 
Drosophila models. Drosophila has only one isoform belonging to B56 
family, impeding our ability to identify which member of the B56 family 
carries out each dephosphorylation event. This has to be further 
explored in mammalian systems. 

PP2A-B56 holoenzymes are also involved in the crosstalk between 
the PI3K/AKT/mTORC and MAPK signaling pathways. Namely, PP2A- 
B56ε acts as a negative regulator of MAP4K3, mediating its ability to 
signal to mTORC1 during amino acid withdrawal [87]. Moreover, both 
ERK and AKT can phosphorylate and inactivate GSK3β, while PP2A- 
B56δ activates it [88–90]. 

3.3.3. The MYC oncoprotein 
The MYC protein is one of the best-characterized PP2A substrates. 

MYC is a master transcription factor that regulates a wide spectrum of 
target genes related to proliferation, differentiation, and metabolism; 
thus, the expression of MYC is tightly controlled in normal cells. How
ever, the aberrant activation of MYC is one of the most common events 
in solid and hematopoietic neoplasias, being associated with aggressive 
forms of cancers, poor prognosis, and treatment resistance [91]. 

MYC is a short half-live protein; thus, its post-transcriptional regu
lation plays an essential role in its stability and function (Fig. 5). PP2A- 
B56 holoenzymes not only regulate MYC in a direct way but also 
modulate the activity of kinases involved in MYC phosphorylation. Two 
interdependent phosphorylation sites are critical for MYC regulation: 
Ser62 and Thr58 [92]. When ERK is activated by MEK phosphorylation, 
it forms dimers and translocates to the nucleus where it phosphorylates 
MYC at Ser62, stabilizing and activating it, and promoting the formation 
of dimers with MAX. These, p-MYC-MAX dimers bind to E-box sequences 
in the regulatory regions of multiple genes promoting their expression. 
As mentioned above, PP2A-B56α complexes inhibit ERK [51,64,77]. 
PIM-1 is a highly conserved Ser/Thr protein kinase that also stabilizes 
MYC through phosphorylation at Ser62 [93]. Interestingly, PIM-1 is a 
PP2A-B56β substrate and its PP2A-dependent dephosphorylation de
creases its stability. Indeed, B56β knockdown increases PIM-1 protein 
half-life and reduces its ubiquitination [94]. Furthermore, MYC Ser62 
can also be phosphorylated by CDKs. 

Phosphorylation of Ser62 also primes MYC for GSK3β-mediated 
phosphorylation at Thr58, which initiates MYC turnover. To be active, 
GSK3β has to be dephosphorylated by PP2A-B56δ complex at Ser9 [95]. 
It has been reported that Ppp2r5d (B56δ) knockout mice are predisposed 
to spontaneous tumor development, and RNA sequencing analysis 
revealed MYC activation in this model [96]. This confirms that uncon
trolled MYC activity due to B56δ inactivation is a tumor-predisposing 
factor. In fact, MYC participates in the regulation of its own half-life 
through direct binding and transcriptional activation of PPP2R5D gene 
[97]. Dual phosphorylation of MYC (Ser62 and Thr58) allows a PIN1- 
mediated Pro63 isomerization step to facilitate the direct interaction 
of PP2A-B56α with the N-terminal transactivation domain of MYC, 
which contains the Ser62 residue, thereby driving its dephosphorylation 
[98]. Dephosphorylation of Ser62 marks MYC for ubiquitin-mediated 
proteasomal degradation. To facilitate coordinated MYC degradation, 
the scaffold protein Axin1 mediates the formation of a complex con
taining MYC, GSK3β, PIN1, and PP2A-B56α (Fig. 5) [59]. 

Recently, several groups confirmed the role of PP2A-B56 holoen
zymes in the regulation of MYC using specific pharmacological ap
proaches in different models such as engineered MYC overexpressing 
lung cancer or non-small cell lung cancer (NSCLC) xenografts [23]. 
Interestingly, MYC also regulates PP2A function. When MYC is in an 
active form it can promote the expression of CIP2A and SET, two well- 
defined endogenous inhibitors of PP2A [41,99,100]. 

3.3.4. The BCL2 family of pro-apoptotic and anti-apoptotic proteins 
Resisting cell death is one of the core hallmarks of cancer, tumor cells 

must be able to avoid apoptosis because programmed death is a natural 
barrier against tumorigenesis. How cancer cells evade apoptosis varies 
greatly by the type of cancer and even within the same kind of cancer. 
The mechanisms used most by tumor cells to counteract the pro- 
apoptotic chain of events are overexpression of anti-apoptotic proteins 
such as BCL2, MCL1, and BCL-XL; downregulation or inactivation of pro- 
apoptotic proteins such as BIM, BID, BAX, PUMA, and NOXA; or inac
tivation of the BAX and BAK pore-forming proteins [101–104]. The 
stability or activation of these proteins is regulated by post-translational 
modifications such as phosphorylation. PP2A-B56 complexes participate 
in the regulation of the mitochondrial intrinsic apoptosis pathway with a 
pro-apoptotic role (Fig. 6). 

Regarding the anti-apoptotic proteins, BCL2 is inactivated after 
Ser70 dephosphorylation by the PP2A-B56α heterocomplex, increasing 

Fig. 3. Role of PP2A-B56 in the modulation of the MAPK/ERK pathway. RAS is 
activated by transmembrane receptors and promotes RAF dimerization and 
activation. Active RAF phosphorylates MEK1/2 at Ser217 and Ser221, fostering 
its activation. On the contrary, PP2A can inactivate MEK1/2 [62,66]. MEK1/2 
is able to phosphorylate ERK at Thr202 and Tyr204 resulting in ERK activation. 
ERK enhances MYC and MCL1 stability by phosphorylation. ERK is a PP2A- 
B56α substrate and its dephosphorylation at Thr202/Tyr204 prevents its kinase 
activity [51,63,64]. ERK phosphorylates IER3 at Thr18 and forms a complex 
with it, IER3 binds B56 subunits and then ERK can phosphorylate them at 
Ser327 promoting the dissociation of the PP2A complex [51]. Black arrows 
indicate activation, red arrows denote inhibition, and dotted arrows designate a 
B-subunit, which when active, binds to the AC-dimer (Figure created in BioR 
ender.com). 
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its association with p53 and enhancing the action of the BCL2-specific 
inhibitor venetoclax in hematological neoplasias [64,105,106]. Addi
tionally, PP2A dephosphorylates BCL-XL at Ser62 enhancing its inacti
vation in retinal pigment epithelial cells [107], although more studies 
are needed to know which B-subunit is responsible for this observation. 

Moreover, phosphorylation regulates MCL1 stability. MCL1 pos
sesses many potential phosphorylation sites due to the presence of a 
large regulatory region with PEST motifs. Nevertheless, most of these 
sites are not characterized well enough to create a holistic picture of the 
regulation of MCL1 by phosphorylation [102]. Of importance, ERK and 
GSK3β, the main kinases responsible for MCL1 phosphorylation, are 
regulated by PP2A. ERK phosphorylates MCL1 at Thr92 and Thr163 

enhancing its activation and stabilization through the avoidance of its 
proteasome degradation. GSK3β phosphorylates Ser155 and Ser159 
inactivating the anti-apoptotic functions of MCL1 and promoting its 
ubiquitination and subsequent degradation [108]. Dephosphorylation of 
MCL1 has not been well studied yet, although Wertz, et al. demonstrated 
that during mitotic arrest MCL1 is associated with PP2A, and PP2A-B56 
has been associated with the cell cycle protein Fam72a to modulate 
MCL1 phosphorylation during the G2/M phase of the cell cycle 
[109,110]. Taking together, PP2A-B56α and PP2A-B56δ complexes are 
able to inhibit MCL1 activity in cancer cells through ERK and GSK3β 
dephosphorylation respectively [64,89,90]. 

Additionally, PP2A dephosphorylates the pro-apoptotic protein BAD 

Fig. 4. PP2A-B56 regulation of PI3K/AKT/mTOR pathway. PI3K activation promotes the transition from PIP2 to PIP3 at the cell membrane. PIP3 induces the 
activation of PDK1 which in the last term activates AKT. The first step of negative regulation of the AKT pathway is through PTEN, a protein that catalyzes the 
contrary reaction of PI3K. Phosphorylation of PTEN at Ser380, Thr382, and Thr383 residues negatively regulates its activity and stability. Of importance, PTEN 
dephosphorylation and therefore its activation is PP2A dependent [189]. MTORC2 can also activate AKT after Thr308 and Ser473 phosphorylation. Opposing, PP2A- 
B55α and PP2A-B56β/γ dephosphorylate these residues [77,78]. Interestingly, the B56γ subunit is enhanced by AMPK phosphorylation [82]. AKT induces mTORC1 
and subsequent S6K activation. S6K is a PP2A-B56 substrate [85,86]. Besides, mTORC1 phosphorylates B56α/β/δ/ε subunits enhancing the PP2A-mediated acti
vation of the transcription factor FOXK1 [83,84]. Black arrows indicate activation, red arrows denote inhibition, and dotted arrows designate a B-subunit which 
when active binds to AC-dimer (Figure created in BioRender.com). 

I. Peris et al.                                                                                                                                                                                                                                     

http://BioRender.com


BBA - Reviews on Cancer 1878 (2023) 188953

9

at Ser112 and the transcription factor FoxO3A at Ser253, which en
hances the expression of other pro-apoptotic proteins such as BIM [103]. 
Both of these proteins, when hyperphosphorylated, are sequestered in 
the cytoplasm by 14-3-3 proteins, resulting in the inhibition of their 
function. Their phosphorylation has been attributed to AKT and p38, 
which are kinases also regulated by the PP2A-B56 family [111,112]. 

3.3.5. The β-catenin 1 protein 
The Wnt/β-catenin pathway controls differentiation, stemness, and 

motility of cells, and is critical for stem cell maintenance and cellular 
proliferation of leukemic stem cells (LSC) [113]. Importantly, Wnt/ 
β-catenin signaling deregulation is often observed in human malig
nancies. PP2A-B56 complexes are important regulators of this pathway 
at multiple levels in a tissue-dependent manner. In the canonical Wnt/ 
β-catenin cascade, the absence of the Wnt ligand allows phosphorylated 
β-catenin to form a complex composed of the scaffold protein Axin, APC, 
and the kinases CK1α and GSK3β. Phosphorylated β-catenin is primed 
for ubiquitination and proteasomal degradation [114]. However, when 
the Wnt ligand binds to its receptor, dephosphorylation of β-catenin is 
promoted and then, the PP2A holoenzymes containing B56α and B56ε 
form part of the complex coordinated by Axin, which furnishes neces
sary interactions [115,116]. Furthermore, PP2A-B56γ has also been 
implicated in the regulation of β-catenin during development [117,118]. 
PP1 also forms part of the complex dephosphorylating Axin and 
impairing its interaction with GSK3 when Wnt ligand is present [119]. 
Regarding upstream regulation, Fam13a is frequently altered in lung 
diseases, including chronic obstructive pulmonary disease, asthma, lung 
cancer, and pulmonary fibrosis. Fam13a Ser322 phosphorylation, which 
acts as a molecular switch to control its subcellular distribution, is car
ried out by AKT and removed by PP2A-B56ε. When Fam13a is dephos
phorylated, it shuffles to the nucleus where activates Wnt signaling 

[120]. Taking together, the modulation of the Wnt/β-catenin cascade in 
cancer stem cells can promote their differentiation and sensitize them to 
cancer therapies. 

3.3.6. The TP53 tumor suppressor 
The function of PP2A-B56γ in the regulation of cell cycle progression 

is crucial and one mechanism through which this heterotrimer regulates 
these processes is through the modulation of p53 phosphorylation 
[121]. TP53 encodes a tumor suppressor protein containing transcrip
tional activation, DNA binding, and oligomerization domains. The 
encoded protein responds to diverse cellular stresses to regulate the 
expression of target genes, thereby inducing cell cycle arrest, apoptosis, 
senescence, DNA repair, or changes in metabolism. Mutations in this 
gene are associated with a variety of human cancers and are often 
associated with poor prognosis. Interestingly, the p53 transcription 
factor regulates the expression of several pro-apoptotic proteins such as 
BAX, PUMA, and NOXA [122]. DNA damage induces phosphorylation of 
p53 at Ser15 by ATM [121]. This modification enhances PP2A-B56γ 
complex assembly and its association with p53, triggering Thr55 
dephosphorylation of p53 [123]. Two of the three splice variants of 
B56γ, B56γ1 and B56γ3, dephosphorylate p53 at Thr55, an event that 
stabilizes p53 promoting apoptosis [124]. B56γ3 also promotes the 
degradation of the transcriptional coactivator p300, which acetylates 
p53, increasing its transcriptional activity [125]. Moreover, ATM ac
tivity is inhibited by PP2A-B55α mediated dephosphorylation [126]. 

Another important substrate of PP2A-B56 phosphatase complexes 
involved in DNA damage response and cancer is the protein BRCA2, 
which plays a central role in homologous recombination. BRCA2 pre
sents a SLiM motif that allows for its binding to the PP2A-B56α heter
otrimer. Indeed, phosphorylation of surrounding sites of BRCA2 LxxlxE 
motif by ATM and ATR kinases stimulates the formation of the PP2A- 

Fig. 5. Functions of PP2A-B56 in the regulation of the MYC oncoprotein. Activation of ERK or PIM-1 kinases lead to the phosphorylation of MYC at Ser62 which 
activates and stabilizes the protein. PP2A-B56α and PP2A-B56β complexes inhibit ERK and PIM-1, respectively, by dephosphorylation. Active MYC forms dimers with 
MAX and promotes the transcription of many genes, one of which is PPP2R5D, a gene coding for the B56δ subunit. Phosphorylation of Ser62 also primes MYC for 
GSK3β phosphorylation at Thr58, which initiates MYC turnover. PP2A-B56δ complex dephosphorylates and activates GSK3β, which can be inactivated by AKT, a 
kinase controlled by PP2A-B55α and PP2A-B56γ complexes. Dually phosphorylated MYC allows PIN1-mediated Pro63 isomerization step which enhances PP2A- 
B56α-mediated MYC dephosphorylation at Ser62. Thr58 p-MYC is ubiquitinated and degraded in the proteasome. The scaffold protein Axin1 coordinates this process 
binding MYC, GSK3β, PIN1, and PP2A-B56α (Figure created in BioRender.com). 
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B56α-BRCA2 complex [127]. This complex is necessary for appropriate 
homologous recombination repair. 

3.3.7. The GLI3 protein in the Hedgehog pathway 
The Hedgehog pathway is an evolutionarily conserved develop

mental pathway that is involved in tumorigenesis. Its main effectors are 
the transcription factors GLI1, GLI2, and GLI3. GLI proteins have to be 
phosphorylated by kinases such as Kif7, PKA, or cAMP to be translocated 
to the nucleus. Several studies have demonstrated an essential role for 
the PP2A-B56ε heterotrimer in this pathway since this complex inhibits 
Hedgehog signaling by dephosphorylating GLI proteins [128,129]. 
Furthermore, PP2A antagonizes the action of mTORC1, which activates 
GLI3. The inactivation of mTORC1 results in GLI3 cytosolic retention 
and prevents the transcription of genes involved in cell growth and 
proliferation. This highlights the diversity of PP2A-B56 hetero
complexes tumor suppressor roles once again [130]. 

All functions of PP2A-B56 holoenzymes are not mentioned here, such 
as their remarkable role in regulating cell cycle checkpoints and their 
recently described role in the regulation of Hippo-Yorkie signaling in 
Drosophila [34,131–133]. Further studies are needed to discover the role 
of these heterotrimers in the modulation of other pathways and sub
strates. Interestingly, recent phosphoproteomic analyses have revealed a 
large number of cancer-relevant PP2A-B55 and PP2A-B56 targets 

[36,134]. 

4. PP2A-B56 deregulation in cancer 

Deregulation and dysfunction of PP2A in disorders such as cancer, 
neurodegenerative syndromes, and diabetes have broadened our un
derstanding of the role of PP2A in health and disease. The first studies on 
the role of PP2A as a tumor suppressor came from studies demonstrating 
that okadaic acid-mediated inhibition of PP2A caused tumors in mice 
and the observation that viral proteins such as the adenovirus E4orf4, 
polyomavirus small and middle T antigens, and the SV40 small T antigen 
were oncogenic [135–137]. These viral proteins function by displacing 
B-subunits from the PP2A heterocomplexes, leading to altered PP2A 
activity [11,138]. PP2A inactivation occurs in several solid and hema
tological tumors, leading to the acquisition of many of cancer hallmarks 
such as sustained proliferative signaling and cell death resistance. In this 
review, we focus on the specific inhibition of complexes containing B56 
subunits and how they contribute to PP2A inhibition-mediated tumor
igenesis [139]. Furthermore, as indicated above, the important role of 
direct substrates of PP2A-B56 heterocomplexes in cancer highlights the 
importance of these holoenzymes in this heterogeneous disease and 
their potential role as biomarkers. 

Current evidence based upon large-scale cancer genomic sequencing 

Fig. 6. Role of PP2A-B56 in triggering apoptosis. Regulation of anti-apoptotic proteins: 1) PP2A-B56α and PP2A-B56δ holoenzymes dephosphorylate ERK and 
GSK3β, the main kinases responsible for MCL1 phosphorylation. MCL1 phosphorylation at Thr163 by ERK enhances MCL1 protein activity and stability, while 
phosphorylation at Ser159 by GSK3β inactivates MCL1 and promotes its ubiquitination and subsequent degradation. Importantly, MCL1 Thr163 phosphorylation 
primes this protein for GSK3β phosphorylation. 2) PP2A-B56α dephosphorylates Ser70 p-BCL2 and decreases its pro-survival activity. 3) PP2A dephosphorylates 
Ser62 p-BCL-XL. Regulation of pro-apoptotic proteins: BAD is directly dephosphorylated by PP2A at Ser112, and BIM is expressed after activation of its transcription 
factor FoxO3a by PP2A-dependant dephosphorylation. When BAD and FoxO3a are phosphorylated, they are sequestered in the cytoplasm by 14-3-3 proteins. AKT 
phosphorylates BAD and FoxO3a (Figure created in BioRender.com). 
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efforts showed that PP2A inactivation in cancer is largely a result of non- 
genetic mechanisms [10,140]. In fact, the frequency of inactivating 
mutations in PP2A genes is low, with the PPP2R1A A-subunit gene 
showing the highest mutation rate: 1.17% across 9,759 samples of 
diverse human cancer types at diagnosis [21]. Interestingly, the recur
rent pathologic mutations in the scaffold subunit occur along its B- 
subunit binding interface, and mutations in the residues P179, R183, 
S256, and R258 result in marked changes in the PP2A holoenzyme 
composition, impairing the binding of specific B-subunits [69,141,142]. 

A wide range of different non-genetic mechanisms is responsible for 
PP2A inactivation and holoenzyme disassembly, illustrating the 
complexity of PP2A regulation and signaling in each type of cancer cell. 
Cancer cells generally evade PP2A-mediated tumor suppression in three 
ways: by altering the expression of PP2A post-translational modifier 
proteins such as PME-1, LCMT-1, or PTPA [143–145]; by aberrant 
overexpression of PP2A endogenous inhibitors such as SET or CIP2A 
[41,146,147]; or by downregulating the expression of specific PP2A 
subunits [48,148,149]. Here will focus on the most common and well- 
studied alterations. 

As indicated above, PME-1 reduces PP2A tumor suppressor activity 
through C-subunit demethylation [32]. PME-1 overexpression is a 
common event in endometrial cancer, glioblastoma, and primary T-cell 
acute lymphoblastic leukemia (T-ALL) cells, which prevents the binding 
of methyl-sensitive PP2A B-subunits to the core enzyme [150,151]. In 
glioma, it has been associated with therapy resistance [152]. However, 
the most common mechanism by which PP2A is inactivated in cancer is 
the overexpression of endogenous inhibitors. High expression of the SET 
oncoprotein has been frequently detected and associated with poor 
prognosis in a large variety of both solid (breast, NSCLC, pancreatic, and 
metastatic colorectal cancers) and hematological tumors (acute myeloid 
and chronic lymphocytic leukemia) [153–156]. Interestingly, SET has 
been associated with B56α in gastric cancer [40], indicating the possi
bility of specific inhibition of this heterocomplex in tumor cells. In acute 
myeloid leukemia (AML), SET is overexpressed in ~30% of the cases and 
it is associated with poor outcomes [157]. 

High CIP2A expression predicts poor patient prognosis in several 
human cancer types [158]. Specifically, CIP2A impairs PP2A-B56α ac
tivity leading to the stabilization of MYC [159]. Similarly, CIP2A sta
bilizes E2F1 by preventing Ser364 PP2A-B56-dependent 
dephosphorylation and induces hyperactivation of AKT by inhibiting the 
dephosphorylation of Ser473 [160,161]. CIP2A is widely overexpressed 
in human cancers including gastric, bladder, ovarian, tongue, hepato
cellular, colon, NSCLC, AML, and chronic myeloid leukemia [158]. 
CIP2A overexpression in lung tumors enhances JNK activity and in AML, 
is a recurrent event associated with a poor prognosis [146,162]. 

C-KIT mutations have been associated with downregulation of B55α, 
B56α, B56γ, and B56δ in AML [148,163]. In these models, suppression 
of B56γ expression contributes to the transformation of human cells, 
since in G2 cell cycle stage PP2A-B56γ modulates endogenous RAS 
signaling and p53 function [123,133,164]. Furthermore, PPP2R5E 
mRNA and B56ε protein expressions are downregulated in ~60% of 
AML cases, respectively, and correlate with p53 levels, suggesting that 
the molecular effects of this B-subunit could occur via the modulation of 
p53 [149]. Moreover, recent studies have pointed out that low PPP2R5A 
(B56α) and PPP2R5B (B56β) expression are associated with poor prog
nosis in AML and hepatocellular carcinoma, respectively [64,165]. 

Altogether, a wide range of different mechanisms inactivates PP2A, 
illustrating the complexity of PP2A regulation and signaling in each type 
of cancer cell. 

5. Perspectives of PP2A targeting in cancer 

The discovery of PP2A as a tumor suppressor prompted the evalua
tion of the safety and efficacy of compounds which can restore PP2A 
activity. PP2A targeting has been difficult to achieve due to its 
complexity and wide range of different heterotrimers; therefore, its 

indirect reactivation has been proposed as the most effective strategy 
[14]. Several molecules targeting endogenous inhibitors of PP2A, such 
as FTY720 and OP449, have already been characterized [166]. 

FTY720 is an oral sphingosine analog approved by the FDA for the 
treatment of patients with relapsing multiple sclerosis and for the pro
phylaxis of solid organ transplantation rejection [167]. FTY720 displays 
anti-cancer activity by interacting with SET and consequently, indirectly 
reactivating PP2A [100,168–170]. Despite its proven efficacy and 
selectivity, FTY720 has not been re-purposed as an anti-tumor agent, 
partly due to its toxicity at the elevated anti-neoplastic dose required. In 
addition, the interaction of FTY720 with S1P receptors is sufficient to 
induce cardiotoxicity in mice and humans [171]. Importantly, re- 
activation of PP2A by FTY720 does not require its phosphorylation or 
S1P receptor interaction; therefore, efforts have been invested in the 
development of non-phosphorylable FTY720 analogs. This is the case of 
CM-1231, a small molecule that is safer and more effective than FTY720. 
CM-1231 also reactivates PP2A by disrupting the SET-PP2A interaction 
with a greater efficiency than FTY720, and does not demonstrate car
diotoxicity in zebrafish embryos [172]. Another non-phosphorylable 
analog is OSU-2S, which has also demonstrated antitumor effects in 
hematological neoplasias [173]. In AML, PP2A activation upon OSU-2S 
treatment decreases LSC population and increases leukemic blast 
maturation through the modulation of the PP2A/c-MYC/p21 axis [174]. 
Another molecule developed to activate PP2A in transformed cells is the 
small peptide OP449. OP449 treatment suppresses growth, enhances 
apoptosis, and impairs clonogenicity in AML, breast cancer, and neu
roblastoma as well as in other tumor types [100,175,176]. 

On the other hand, the deeper knowledge about the PP2A hetero
complex structure, formation, and function, has allowed for the devel
opment of a new class of small molecule activators of PP2A (SMAPs). 
SMAPs are able to stabilize specific PP2A holoenzymes. These molecules 
hold tremendous potential within the field of cancer, not only for their 
translational potential but also as tools to determine new functions and 
substrates of specific B-subunits. DT-061, a highly optimized SMAP, 
specifically stabilizes the PP2A-B56α complex in an assembled and 
active state, whereas the binding of other regulatory subunits is either 
decreased or unchanged [17]. DT-061 specificity has been confirmed in 
AML cell lines lacking B56α subunit expression [64]. This implies that 
mechanistically, this class of SMAPs selectively stabilizes specific PP2A 
holoenzymes through their ability to bind a unique interfacial drug 
pocket formed where the three PP2A subunits come together [177]. DT- 
061 has shown its efficacy in vitro and in vivo in Burkitt lymphoma, 
breast cancer, AML, CLL, distinct types of lung cancer, hepatocellular 
carcinoma, pancreatic ductal adenocarcinoma, glioblastoma, and pros
tate cancer [46,63,64,68,178–182]. Of note, MYC inactivation in MYC- 
driven tumors can lead to faster tumor regression as a result of the de
pendency of these cells on MYC. Interestingly, DT-061 stabilizes the 
PP2A-B56α specific holoenzyme allowing MYC dephosphorylation 
resulting in its proteasomal degradation [178]. 

As PP2A holoenzymes regulate a countless variety of signaling 
pathways, an interesting approach to consider is the combination of 
PP2A activator drugs with other cancer treatments or even different 
strategies to activate PP2A at the same time [183]. To this end, our 
group showed that FTY720, CM-1231, and DT-061 combined with 
venetoclax and venetoclax-azacitidine treatments have synergistic ef
fects in in vitro and in vivo AML models, confirming that PP2A activators 
might be used to improve the clinical effects of the standard-of-care 
therapy in high-risk AML patients. This combination has also been 
effective in diffuse large B-cell lymphoma and in T-ALL where instead of 
venetoclax, a BCL-XL specific inhibitor was used [64]. Moreover, com
binations of either FTY720 or OP449 plus tyrosine kinases inhibitors 
showed promising results in T-ALL and AML models [184,185]. In 
addition, OSU-2S synergistically boosts the antiproliferative effects of 
sorafenib in hepatocellular carcinoma cells [186]. Additionally, SMAPs 
have been shown to have significant synergistic activity when combined 
with MEK inhibitors in K-RAS mutant lung cancer and with gilteritinib in 
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FLT3-mutated AML [68,187]. In both scenarios, the synergy mechanism 
results in MYC degradation and AKT inactivation. These small PP2A 
modulators have also been combined with CDK9 inhibitors in MLL- 
rearranged AML and solid tumors, revealing an important synergistic 
relationship as a result of PP2A’s interactions with the INTAC complex 
[188]. 

Collectively, these findings open many new avenues to translate 
these novel PP2A activation strategies to the clinic and improve the 
therapeutic options available to cancer patients. 

6. Concluding remarks 

Reversible phosphorylation of proteins is a post-translational modi
fication that regulates all aspects of life through the antagonistic action 
of kinases and phosphatases. Although the number of genes codifying for 
kinases (>500) is far larger than phosphatases (<200) [3,4], the struc
tural complexity of the phosphatase families allows for a single catalytic 
subunit to be part of hundreds of structurally distinct holoenzymes and 
dephosphorylate target substrates with exquisite selectivity. The key to 
the accuracy of substrate recognition by PP2A is provided by the 
different regulatory B subunits, which determine the substrate speci
ficity and the subcellular localization of the heterotrimers. Therefore, it 
is essential to understand the function and regulation of individual PP2A 
B-subunits [7,8,42]. In this review we have summarized the regulation 
and known effects of specific PP2A-B56 holoenzymes and their roles in 
cancer. 

PP2A-B56 heterotrimers are tumor suppressors that play essential 
roles in cellular homeostasis by controlling the regulation of major 
signaling pathways. Through the upregulation of several protein kinases 
involved in mitogenic and survival signaling (e.g. ERK and AKT), the 
stabilization of oncoproteins (e.g. MYC), the destabilization of tumor 
suppressors (e.g. p53), or the regulation of anti-apoptotic proteins (e.g. 
MCL1), dysregulation of specific PP2A-B56 holoenzymes are critical 
determinants and drivers of cell transformation. Furthermore, since 
PP2A is a major antagonist of kinase activity and its deregulation in solid 
and hematological tumors is very common, a deeper understanding of 
the function and regulation of individual PP2A heterocomplexes has 
facilitated the development of new therapeutic approaches in cancer 
[54]. In this regard, we must highlight the advances in the development 
of SMAPs, small molecules capable of selectively stabilizing individual 
PP2A heterotrimers in a rational and context-dependent manner 
[17,46,63,64,68,177–181]. As noted above, several drug combinations 
that include PP2A modulators have already been successful in vitro and 
in vivo models of cancer. Furthermore, the synergistic effects of these 
combinations are associated with the suppression of key pathways not 
only for cancer cell survival but also for therapeutic resistance, sup
porting the possible near-term clinical translation of these approaches 
for the treatment of a wide range of human cancers [64,69]. 
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