36 research outputs found

    An update on the pathogenesis and diagnosis of Diamond–Blackfan anemia [version 1; referees: 2 approved]

    Get PDF
    Diamond–Blackfan anemia (DBA) is a rare congenital hypoplastic anemia characterized by a block in erythropoiesis at the progenitor stage, although the exact stage at which this occurs remains to be fully defined. DBA presents primarily during infancy with macrocytic anemia and reticulocytopenia with 50% of cases associated with a variety of congenital malformations. DBA is most frequently due to a sporadic mutation (55%) in genes encoding several different ribosomal proteins, although there are many cases where there is a family history of the disease with varying phenotypes. The erythroid tropism of the disease is still a matter of debate for a disease related to a defect in global ribosome biogenesis. Assessment of biological features in conjunction with genetic testing has increased the accuracy of the diagnosis of DBA. However, in certain cases, it continues to be difficult to firmly establish a diagnosis. This review will focus on the diagnosis of DBA along with a description of new advances in our understanding of the pathophysiology and treatment recommendations for DBA

    Drug discovery for Diamond-Blackfan anemia using reprogrammed hematopoietic progenitors

    Get PDF
    Diamond-Blackfan anemia (DBA) is a congenital disorder characterized by the failure of erythroid progenitor differentiation, severely curtailing red blood cell production. Because many DBA patients fail to respond to corticosteroid therapy, there is considerable need for therapeutics for this disorder. Identifying therapeutics for DBA requires circumventing the paucity of primary patient blood stem and progenitor cells. To this end, we adopted a reprogramming strategy to generate expandable hematopoietic progenitor cells from induced pluripotent stem cells (iPSCs) from DBA patients. Reprogrammed DBA progenitors recapitulate defects in erythroid differentiation, which were rescued by gene complementation. Unbiased chemical screens identified SMER28, a small-molecule inducer of autophagy, which enhanced erythropoiesis in a range of in vitro and in vivo models of DBA. SMER28 acted through autophagy factor ATG5 to stimulate erythropoiesis and up-regulate expression of globin genes. These findings present an unbiased drug screen for hematological disease using iPSCs and identify autophagy as a therapeutic pathway in DBA.National Institute of Diabetes and Digestive and Kidney Diseases (U.S.) (Grant R24-DK092760)National Institute of Diabetes and Digestive and Kidney Diseases (U.S.) (Grant R24-DK49216)National Institute of Diabetes and Digestive and Kidney Diseases (U.S.) (Grant U54DK110805)National Heart, Lung, and Blood Institute (Grant UO1-HL100001)National Heart, Lung, and Blood Institute (Grant U01HL134812)National Heart, Lung, and Blood Institute (Grant R01HL04880)National Institutes of Health (U.S.) (Grant R24OD017870-01

    L-leucine improves anemia and growth in patients with transfusion-dependent Diamond Blackfan anemia: Results from a multicenter pilot phase I/II study from the Diamond Blackfan Anemia Registry

    Get PDF
    Background: Diamond-Blackfan anemia (DBA) is an inherited bone marrow failure syndrome characterized by anemia, short stature, congenital anomalies, and cancer predisposition. Most cases are due to mutations in genes encoding ribosomal proteins (RP) leading to RP haploinsufficiency. Effective treatments for the anemia of DBA include chronic red cell transfusions, long-term corticosteroid therapy, or hematopoietic stem cell transplantation. In a small patient series and in animal models, there have been hematologic responses to L-leucine with amelioration of anemia. The study objectives of this clinical trial were to determine feasibility, safety, and efficacy of L-leucine in transfusion-dependent patients with DBA. Procedure: Patients ≥2 years of age received L-leucine 700 mg/m2 orally three times daily for nine months to determine a hematologic response and any improvement in growth (NCT01362595). Results: This multicenter, phase I/II study enrolled 55 subjects; 43 were evaluable. There were 21 males; the median age at enrollment was 10.4 years (range, 2.5-46.1 years). No significant adverse events were attributable to L-leucine. Two subjects had a complete erythroid response and five had a partial response. Nine of 25, and 11 of 25, subjects experienced a positive weight and height percentile change, respectively, at the end of therapy. Conclusions: L-leucine is safe, resulted in an erythroid response in 16% of subjects with DBA, and led to an increase in weight and linear growth velocity in 36% and 44% of evaluable subjects, respectively. Further studies will be critical to understand the role of L-leucine in the management of patients with DBA

    Multiple learning parameters differentially regulate olfactory generalization.

    No full text

    Red Cell Aplasia: Acquired and Congenital Disorders

    No full text

    Erythropoiesis: insights into pathophysiology and treatments in 2017

    Get PDF
    Abstract Erythropoiesis is a tightly-regulated and complex process originating in the bone marrow from a multipotent stem cell and terminating in a mature, enucleated erythrocyte. Altered red cell production can result from the direct impairment of medullary erythropoiesis, as seen in the thalassemia syndromes, inherited bone marrow failure as well as in the anemia of chronic disease. Alternatively, in disorders such as sickle cell disease (SCD) as well as enzymopathies and membrane defects, medullary erythropoiesis is not, or only minimally, directly impaired. Despite these differences in pathophysiology, therapies have traditionally been non-specific, limited to symptomatic control of anemia via packed red blood cell (pRBC) transfusion, resulting in iron overload and the eventual need for iron chelation or splenectomy to reduce defective red cell destruction. Likewise, in polycythemia vera overproduction of red cells has historically been dealt with by non-specific myelosuppression or phlebotomy. With a deeper understanding of the molecular mechanisms underlying disease pathophysiology, new therapeutic targets have been identified including induction of fetal hemoglobin, interference with aberrant signaling pathways and gene therapy for definitive cure. This review, utilizing some representative disorders of erythropoiesis, will highlight novel therapeutic modalities currently in development for treatment of red cell disorders

    The road not taken?

    No full text
    corecore