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REVIEW Open Access

Erythropoiesis: insights into
pathophysiology and treatments in 2017
Andrea Zivot1,2, Jeffrey M. Lipton1,2,3, Anupama Narla4† and Lionel Blanc1,2,3*†

Abstract

Erythropoiesis is a tightly-regulated and complex process originating in the bone marrow from a multipotent stem
cell and terminating in a mature, enucleated erythrocyte.
Altered red cell production can result from the direct impairment of medullary erythropoiesis, as seen in the
thalassemia syndromes, inherited bone marrow failure as well as in the anemia of chronic disease. Alternatively, in
disorders such as sickle cell disease (SCD) as well as enzymopathies and membrane defects, medullary
erythropoiesis is not, or only minimally, directly impaired. Despite these differences in pathophysiology, therapies
have traditionally been non-specific, limited to symptomatic control of anemia via packed red blood cell (pRBC)
transfusion, resulting in iron overload and the eventual need for iron chelation or splenectomy to reduce defective
red cell destruction. Likewise, in polycythemia vera overproduction of red cells has historically been dealt with by
non-specific myelosuppression or phlebotomy. With a deeper understanding of the molecular mechanisms
underlying disease pathophysiology, new therapeutic targets have been identified including induction of fetal
hemoglobin, interference with aberrant signaling pathways and gene therapy for definitive cure. This review,
utilizing some representative disorders of erythropoiesis, will highlight novel therapeutic modalities currently in
development for treatment of red cell disorders.
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Background
In this review, we hope to provide the reader with an
overview of our current understanding of human
erythropoiesis, along with a classification of represen-
tative disorders leading to a decrease or increase in
red cell production with the clinical strategies being
used currently or in the near future for management
of these patients. The discussion of steady state
erythropoiesis provides the framework for understand-
ing these representative disorders and allows the
reader to contextualize other diseases, not described
herein, within this framework. For a deeper understanding
of the molecular bases governing erythropoiesis, the
reader is referred to these outstanding reviews published

within the last 5 years (Katsumura and Bresnick 2017; An
et al. 2015; Palis 2014; Kalfa and Zheng 2014; Crispino
and Weiss 2014; Keerthivasan et al. 2011).

Erythropoiesis at steady state
Every second, the human body generates 2 million red
blood cells, through the process of erythropoiesis. Hu-
man erythropoiesis is a complex, multi-step process,
from the multipotent hematopoietic stem cell (HSC) to
the mature erythrocyte (Orkin 2000). The first steps of
erythroid differentiation involve an engagement phase,
in which HSCs differentiate into more committed
erythroid progenitors, from a common myeloid pro-
genitor the megakaryocytic-erythroid progenitor and
finally the burst-forming unit- erythroid (BFU-E). BFU-
Es are the first progenitor cells committed solely to the
erythroid lineage (Gregory and Eaves 1977). These
BFU-Es further differentiate into the colony forming
unit-erythroid (CFU-E), following which, terminal dif-
ferentiation occurs.

* Correspondence: Lblanc@northwell.edu
†Equal contributors
1Laboratory of Developmental Erythropoiesis, Center for Autoimmune,
Musculoskeletal, and Hematopoietic Diseases, The Feinstein Institute for
Medical Research, 350 Community Drive, Manhasset, NY 11030, USA
2Division of Pediatrics Hematology/Oncology and Stem Cell Transplantation,
Cohen Children’s Medical Center, New Hyde Park, NY 11040, USA
Full list of author information is available at the end of the article

Molecular Medicine

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Zivot et al. Molecular Medicine  (2018) 24:11 
https://doi.org/10.1186/s10020-018-0011-z

http://crossmark.crossref.org/dialog/?doi=10.1186/s10020-018-0011-z&domain=pdf
http://orcid.org/0000-0002-0185-6260
mailto:Lblanc@northwell.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


The second phase of erythroid maturation involves
the differentiation of the nucleated precursors from
proerythroblasts to basophilic, polychromatophilic and
orthochromatic erythroblasts. This phase is character-
ized by the gradual accumulation of hemoglobin,
progressive decrease in cell size and nuclear condensa-
tion ultimately resulting in enucleation (Granick and
Levere 1964).
The final phase of erythroid development involves the

maturation of the reticulocyte into erythrocytes. It is
during this stage that the erythrocyte acquires its bicon-
cave shape through extensive membrane remodeling and
will circulate in the blood stream until it is removed by
the macrophages within the reticuloendothelial system
(Gifford et al. 2006).
Terminal erythroid differentiation occurs in anatomic

niches known as erythroblastic islands. Erythroblastic
islands are unique to mammalian erythropoiesis and
consist of a central macrophage surrounded by up to 30
erythroid cells at varying degrees of red cell maturation
(Lee et al. 1988). The cells range from CFU-Es to enu-
cleating erythroblasts and are the site of hemoglobin syn-
thesis by terminally differentiating erythroblasts (Bessis
1958; Bessis and Breton-Gorius 1962). The central macro-
phage functions to anchor erythroblasts within the island
and provide the cellular interactions necessary to drive
erythroid differentiation and proliferation. Furthermore,
the central macrophage has also been shown to phagocyt-
ose the extruded nucleus from terminally differentiating
erythroblasts (Seki and Shirasawa 1965; Skutelsky and
Danon 1972; Bessis et al. 1978) and direct the transfer of
iron to erythroid progenitors for heme synthesis (Bessis
and Breton-Gorius 1962; Leimberg et al. 2008).
Macrophages within erythroblastic islands also help

regulate the rate of erythropoiesis via positive and nega-
tive feedback mechanisms. Macrophages secrete cyto-
kines such as insulin-like growth factor-1 that promote
erythroid proliferation and maturation (Kurtz et al.
1985; Sawada et al. 1989). Other functions for the cen-
tral macrophage are still being investigated.

At baseline, erythropoiesis occurs at a steady, but low
basal rate with approximately 1% of circulating erythro-
cytes cleared and replaced by new cells daily (Dzierzak and
Philipsen 2013). RBCs remain in circulation for approxi-
mately 120 days during which time they are continuously
surveyed by resident macrophages within the liver and
spleen (Crosby 1959). Macrophages within the spleen can
detect and remove unwanted or damaged RBCs as well as
aged RBCs at the end of their life span (Crosby 1957).
Figure 1 provides an overview of human erythropoiesis.

Regulation of erythropoiesis
A detailed description of the regulation of human
erythropoiesis is beyond the scope of the current review.
However, several key regulators will be briefly covered as
they are involved in the erythropoietic disorders dis-
cussed below.
Erythropoietin (EPO) is a humoral cytokine synthe-

sized primarily in the kidney and secreted into the blood
stream where it targets erythroid progenitor cells in the
bone marrow (Broxmeyer 2013). The primary function
of EPO is to regulate oxygen delivery to peripheral
tissues and is facilitated by the hypoxic induction of
EPO gene transcription. Multiple transcription factors
are involved in this process including hypoxia inducible
factor, regulated by the relative level of hypoxia, and
GATA binding proteins (Bunn 2013). Among the GATA
proteins, GATA-1, GATA-2 & GATA-3 have been shown
to negatively regulate the expression of EPO mRNA via
binding in the EPO promoter region (Imagawa et al.
1997). As such, the rate of EPO gene transcription is regu-
lated by the local oxygen environment. In addition to
regulating the expression of EPO mRNA, specifically
GATA-1 and GATA-2 play crucial roles in the regulation
of lineage-restricted gene expression during erythroid
differentiation. GATA-1 is necessary for the survival and
terminal differentiation of erythroid progenitors, whereas
GATA-2 regulates the maintenance and proliferation of
hematopoietic stem and progenitor cells. It is the relative
proportion of GATA-1 and GATA-2 expression, that

Fig. 1 Overview of erythropoiesis, from the hematopoietic stem cell (HSC) to the red blood cell (RBC). Erythropoiesis takes place in the bone
marrow, and erythroblastic islands are niches for erythropoiesis from the CFU-E to the reticulocyte state. Then the reticulocyte reaches the blood
stream where it achieves its maturation by losing its internal organelles, remodeling its plasma membrane and finally becomes a RBC
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drives expression of target genes necessary to drive eryth-
roid maturation and ultimate expression of β-globin genes
(Moriguchi and Yamamoto 2014).
EPO binds to the erythropoietin receptor (EPO-R)

which causes receptor homodimerization. Erythropoiesis
regulation by EPO is temporally regulated, and human
studies have shown that EPO binds to the EPO-R from
the CFU-E stage to the polychromatophilic stage (Wu et
al. 1995; Koury and Bondurant 1988). One of the main
signaling pathways mediated by the EPO/EPO-R inter-
action is JAK2 activation (Witthuhn et al. 1993), which
subsequently phosphorylates and activates STAT5. The
JAK2/STAT5 pathway has been shown to activate genes
fundamental for erythroid progenitor survival, proliferation
and differentiation (Grebien et al. 2008). Furthermore,
STAT5 phosphorylation is essential for acceleration of
erythropoiesis during times of hypoxic stress. The JAK2/
STAT5 pathway is chronically activated in polycythemia
vera (Yan et al. 2012) and β-Thalassemia (Libani et al.
2008) by intrinsic (somatic mutations) and extrinsic mech-
anisms, respectively. Other downstream activation path-
ways include mitogen-activated protein kinase (MAPK)
and phosphoinositide 3-kinase (PI3K). Similarly, these
pathways are involved in the differentiation and prolifera-
tion of erythroid progenitors (Zhang et al. 2014).
All differentiating erythroblasts express Fas ligand, how-

ever only immature erythroblasts, predominately the
proerythroblast and basophilic normoblast are vulnerable
to Fas/Fas-ligand cross-linking. Mature erythroblasts at
the polychromatic and orthochromatic stage, utilize this
susceptibility to Fas-ligand-mediated cytotoxicity to pro-
mote continued erythroid differentiation (De Maria et al.
1999). There has been speculation that during periods of
anemia, high levels of erythropoietin expression protect
immature erythroblasts from Fas-ligand mediated cytotox-
icity, thus promoting erythroid survival and an increased
rate of erythropoiesis (Liu et al. 2006) via the extrinsic as
well as the intrinsic cell death pathways.

Erythropoietic disorders
Altered red cell production can be caused by direct im-
pairment in medullary erythropoiesis as seen in the thalas-
semia syndromes, the anemia of chronic illness and
polycythemia vera, a myeloproliferative bone marrow dis-
order with disordered erythropoiesis. Conversely other
disorders such as the sickle cell disease (SCD) syndromes
are presented as an example of anemia characterized by
essentially normal medullary erythropoiesis.

Pathophysiology of β- Thalassemia
Hemoglobin synthesis is controlled by two multi-gene
clusters located on chromosome 16 (α-like globins) and
chromosome 11 (β-like globins). The α gene product
combines with the β gene product to form Hb A (α2β2),

which is the major form of adult hemoglobin. During
fetal life, two γ genes, also located on chromosome 11,
combine with α- globin genes to form Hb F (α2 γ 2). A
gradual switch from Hb F to Hb A begins before birth
and is largely completed by 6 months of age.
In β-thalassemia, a mutation in the β-globin gene results

in an imbalance between α- and β- globin chains. This
results in an accumulation of unstable α-tetramers within
erythroid cells leading to premature cell death within the
differentiating red cell. This leads to ineffective erythropoi-
esis with impaired differentiation of maturing erythroblasts
at the polychromatic and orthochromatic phase)(Centis et
al. 2000), and structural-membrane deformities (Yuan et
al. 1994; Aljurf et al. 1996). The resultant anemia stimu-
lates a compensatory increase in erythropoiesis, with in-
creased proliferation of erythroid precursors in the bone
marrow leading to medullary expansion, bony deformities,
extramedullary hematopoiesis, and hepatosplenomegaly. In
addition, the ineffective erythropoiesis causes suppression
of hepcidin resulting in increased iron absorption and
primary iron overload (Rivella 2009).
Almost 200 mutations in the β-globin gene locus have

been identified that can cause β-thalassemia. Given this
complexity, it is more useful clinically to classify β-
thalassemia as major, intermediate or mild based on the
severity of anemia and the degree of anemia and physical
findings. Thalassemia major presents as severe transfusion-
dependent anemia in patients who are compound hetero-
zygous or homozygous for two β0 alleles. Thalassemia
intermedia is a genetically heterogeneous condition with
varying degrees of anemia in which patients may require
intermittent transfusions and/or a splenectomy. Patients
are usually homozygous for the mild β+ thalassemia allele
or compound heterozygous for a mild β+ thalassemia allele
and a severe β0 thalassemia allele. Patients with β-
thalassemia minor are asymptomatic and usually only
mildly anemic although they are likely to have microcyto-
sis. The clinical phenotype of the β-thalassemias can be
further modified by additional factors such as elevated
levels of HbF or co-inheritance of α-thalassemia, particu-
larly when 2 α chains are deleted resulting in a reduction
in the formation of α tetramers, demonstrating the role of
α:β chain imbalance in the pathophysiology of the disorder.
β -thalassemia can also be co-inherited with hemoglobin

E, a structural β variant that results in Hemoglobin E/β-
thalassemia. This disease phenotype can similarly be clas-
sified as major, intermediate or mild depending on severity
of anemia at presentation. Mutations in α genes are
common in the population affected by E/β-thalassemia
which serves to mitigate the severity of the thalas-
semia. Most patients present with a thalassemia inter-
media phenotype however major-like conditions with
transfusion-dependence as well as very mild forms
also do exist (Vijay et al. 2015).
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Pathophysiology of α-thalassemia
α-thalassemia results from the reduction or absence of
α-globin chains leading to an excess of β-chains that
form a precipitate within the developing red cell. Un-
bound β-chains form tetramers, termed HbH (β4) in
adults or Hb Bart’s (γ4) in the fetal period causing
hemolytic anemia and ineffective erythropoiesis. Individ-
uals affected by α-thalassemia have variable degrees of
anemia, microcytosis and percentage of HbA2 depending
on the number of affected non-functional alpha globin
genes (1–4 α-globin genes) and the relative proportion
of functional α chain synthesis (Kan et al. 1968; Kan and
Nathan 1970). α-thalassemia silent-carrier state occurs
with a single α-globin gene defect and patients are clin-
ically asymptomatic. Diagnosis usually occurs by chance
after routine hematologic evaluation, during antenatal
screening or part of a family study. α-thalassemia trait
results when 2 genes are deleted; patients usually have
mild anemia with microcytosis but remain clinically
asymptomatic. Hemoglobin H (HbH) disease can be
caused by a 3 gene mutation or 2 gene mutation in com-
bination with another globin mutation (such as Constant
spring) resulting in less than 30% α-globin gene expres-
sion. Patients experience hemolytic anemia with varying
degree with of hypersplenism, jaundice and other com-
plications such as gallstones or infections. Patients with
a milder HbH phenotype may be managed by intermit-
tent blood transfusions during periods of stress or inter-
current illness. More severe cases characterized by
severe hemolytic anemia require regular blood transfu-
sions and chelation therapy. When no α-globin is pro-
duced, infants suffer from Hb Bart’s Hydrops Fetalis
Syndrome characterized by severe intra-uterine anemia,
marked hepatosplenomegaly, cardiac failure, ascites and
growth retardation. Affected neonates, most often the
proband, usually die in utero or shortly after birth
(Harteveld and Higgs 2010).

Pathophysiology of sickle cell disease
Sickle cell disease is an autosomal recessive disorder
caused by a point mutation in the β-globin chain resulting
in the single amino acid substitution of valine rather than
glutamic acid at position 6 (Ingram 1956). The inheritance
of βS from both parents results in the most common and
severe form of the disease, Hb SS. However, other com-
pound heterozygous forms of the disease including HbSC,
HbS/β0thalassemia and HbS/β+-thalassemia result in suffi-
cient expression of HbS to cause intracellular sickling
(Ware et al. 2017). The abnormal S hemoglobin causes
aberrant β-chain formation so that during episodes of de-
oxygenation, HbS molecules polymerize together to force
the normal biconcave–shaped erythrocyte into an elon-
gated, rigid form (Acquaye et al. 1988). Sickled erythro-
cytes cause vaso-occlusion in capillaries and arterioles

as well as abnormal endothelial interactions and chronic
hemolysis38. This results in anemia and tissue hypoxia
which results in a variety of acute complications including
painful vaso-occlusive crises (VOCs), stroke, priapism,
and acute chest syndrome (ACS). Chronic complica-
tions are related to small and large vessel vasculopa-
thy, progressive ischemic organ damage and chronic
hemolysis; these include cerebrovascular disease, ret-
inopathy, pulmonary hypertension, gallstones renal
failure, hyposplenism, bone disease, hepatopathy and
premature death (Piel et al. 2017; Powars et al. 2005).

Polycythemia vera
Polycythemia vera (PV) is a clonal disorder of myelopro-
liferation in the bone marrow. It is characterized by
increased red cell mass associated with the proliferation
of the erythroid, megakaryocytic and granulocytic cell
lines. It is the most common chronic myeloproliferative
neoplasm (MPN) in adults and is virtually always char-
acterized by the JAK2V617 point mutation correspond-
ing to JAK2 exon 14 and less commonly, exon 12. The
mutation results in the constitutive activation of the
JAK/STAT signaling pathway that is independent of EPO
signaling (James et al. 2005; Baxter et al. 2005; Kralovics
et al. 2005). There are a multitude of downstream effects
including increased phosphorylation of STAT5 in eryth-
roid progenitors and activation of PI3K and MAPK/ERK
pathways. Furthermore, JAK2 can enter the nucleus and
phosphorylate histone H3 which exerts a direct effect on
the regulation of gene expression.
Early disease manifestations are primarily related to

complications from hyperviscosity including peripheral
arterial and venous thrombosis, stroke and myocardial
infarction. While the primary cause of mortality is attrib-
uted to thrombotic complications, progression to myelo-
fibrosis and acute leukemias remain a significant cause
of long-term morbidity and mortality (Passamonti et al.
2003; Geyer et al. 2016; Tefferi et al. 2013).

Anemia of chronic disease
Elevated levels of circulating inflammatory mediators
such as interleukin 6 (IL-6), transforming growth factor-
β (TGF-β), tumor necrosis factor (TNF) and interferon-γ
(IFN-γ) are found in a multitude of chronic inflamma-
tory conditions and malignancies (Landskron et al. 2014;
Boutou et al. 2012). These conditions are often charac-
terized by anemia which suggests a mechanism for
cytokine-mediated inhibition of erythropoiesis (Freireich
et al. 1957; Johnson et al. 1989; Means and Krantz 1993;
Libregts et al. 2011). Anemia of chronic disorders (ACD)
is the 2nd most common form of anemia worldwide and
is associated with significant impairments in quality of
life (Locatelli et al. 2004). The pathophysiology is multi-
factorial and involves several different pathways.
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IL-6 significantly alters iron trafficking via induction of
hepcidin expression which results in the blockade of
cellular iron egress and reduced iron availability for
erythropoiesis (Weinstein et al. 2002; Nemeth et al.
2004a). Iron homeostasis is further disrupted as several
pro-inflammatory cytokines including interleukin 1 (IL-
1), IL-6, interleukin 10 (IL-10) and TNF stimulate the
uptake of iron by macrophages via various mechanisms
including the stimulation of erythrophagocytosis. Along-
side this, IFN-γ and lipopolysaccharides have been
shown to suppress the expression of ferroportin mRNA
thereby leading to the retention of iron within mono-
cytes (Ludwiczek et al. 2003; Fahmy and Young 1993).
Together, these events all lead to the blunting of dietary
iron absorption and increased iron retention in macro-
phages which is reflected by hypoferremia and normal
or increased ferritin levels. In addition, inflammation
negatively affects the synthesis and biological activity of
EPO. This phenomenon is thought to be due to the
combination of direct inhibition via cytokines such as
TNF and IL-1 (Leng et al. 1996) as well as reduced
EPO-R expression on erythroid progenitors (Wang et al.
1995; Taniguchi et al. 1997).
Finally, pro-inflammatory cytokines, especially the inter-

ferons and TNF appear to inhibit the proliferation and
differentiation of erythroid progenitor cells leading to inef-
fective erythropoiesis (Papadaki et al. 2002; Pontikoglou et
al. 2006). More recently, elevated levels of serum high-
mobility group box 1 (HMGB1) was found in a murine
model of sepsis and administration of anti-HMGB1 mono-
clonal antibodies significantly ameliorated the development
of anemia. Furthermore, administration of recombinant
HMGB1 to healthy mice mediated the anemia and extra-
medullary erythropoiesis with a significant elevation in

reticulocyte counts. This suggests the role of HMGB1 as a
mediator of anemia of chronic disease and suggests a
potential therapeutic strategy for anemia in sepsis (Valdés-
Ferrer et al. 2015) and chronic disease.

Treatment strategies
The diseases described above are not meant to be a
comprehensive compendium of red cell disorders but ra-
ther examples of defective erythropoiesis that, in their
treatment, demonstrate the application of newer thera-
peutic strategies (Tables 1, 2 and 3). Although not always
successful in clinical trials, these new approaches clearly
define the path forward.
Hemoglobinopathies are the most common monoge-

neic disorders worldwide, with approximately 7% of
the population identified as genetic carriers (Kohne
2011). Sickle cell disease and β-thalassemia are two of
the most common genetic disorders affecting red
blood cell (RBC) development (Weatherall et al. 2006).
The hallmarks of these two diseases involve absent, or
aberrant β-globin chain formation resulting in ineffective
erythropoiesis. At present, allogeneic hematopoietic stem
cell transplantation (HSCT) is the only established defini-
tive curative option for SCD and β-thalassemia. Overall
survival for both diseases following HSCT now ap-
proaches 90%. Unfortunately, the majority of patients
do not have matched sibling donors available necessi-
tating the use of matched-unrelated donor (MUD)
transplants. Historically, MUD bone marrow trans-
plantation has been associated with significant mor-
bidity and mortality resulting from graft-versus-host
disease (GvHD) and graft failure (Angelucci et al.
2014; Bacigalupo 2012).

Table 1 Novel therapeutics in Sickle Cell Disease

a. Gene therapy

Bluebird Bio BB305 lentiviral vector
(betibeglogene darolentivec)

Anti-sickling β-globin - Severe SCD
- age ≥ 18 years

IV NCT02140554 Open
- Phase 1/2

Children’s Hospital Medical
Center, Cincinnati

Gamma globin
lentiviral vector

Anti-sickling γ-globin - Severe SCD
- age 18–35

IV NCT02186418 Open
- Phase 1/2

b. Small molecule targets

Boston University SIRT1 HbF induction Early stage of
development
- pre-clinical

The Cleveland Clinic Decitabine and
tetrahydrouridine

HbF induction - age ≥ 18 years
- HbSS, HbSβ°, HbSβ+, HbSC

Oral NCT01685515 Completed
- Phase 1

Celgene Pomalidomide HbF induction - age 18–60
- HbSS, HbSβ°

Oral NCT01522547 Completed
- Phase 1

Novartis Pharmaceuticals Panobinostat HbF induction - age ≥ 18 yers
- HbSS, HbSβ°

Oral NCT01245179 Open
- Phase 1

Dana Farber Cancer
Institute

Vorinostat (Zolinza) HbF induction - age 18–60
- HbSS, HbSβ°

Oral NCT01000155 Discontinued
- Phase 1/2
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Drugs that target the induction of fetal hemoglobin have
been the prototypical strategy used to manage the sequelae
of sickle cell disease including vaso-occlusion and anemia.
This is based on early observational studies that dem-
onstrate decreased mortality in patients with higher levels
of Hb F (Leikin et al. 1989; Platt et al. 1994). Currently,
Hydroxyurea is the most widely used disease-modifying
therapy for sickle cell disease in children (Brawley et al.
2008). Given that observational studies of patients with
β-thalassemia and pancellular hereditary persistence of
fetal hemoglobin (HPFH) have milder disease phenotype

(Musallam et al. 2012), alternative strategies to more ef-
fectively enhance HbF production are attractive thera-
peutic targets for both SCD and β-thalassemia.
Several other investigational drugs have been shown to

increase fetal hemoglobin and are in various stages of clin-
ical investigation. Alternatively, gene therapy is an attractive
therapeutic modality that represents a paradigm shift in the
treatment of hemoglobinopathies away from conventional
medication and symptom alleviation toward a curative
approach. Here we describe the current state of therapy for
these diseases as well as areas of active investigation.

Table 2 Novel Therapeutics in β-Thalassemia

Company Drug/Target Mechanism Eligibility Route Clintrials.gov Status

a. Gene therapy

Bluebird Bio BB305 lentiviral vector
(betibeglogene darolentivec)

Improved
erythropoiesis

- Transfusion-dependent
β-Thalassemia

-age 12–35

IV NCT01745120 Active, not
recruiting
- Phase 1/2

IRCCS San Raffaele GLOBE lentiviral vector Improved
erythropoiesis

- Transfusion-dependent
β-Thalassemia

-age≥ 3 and < 65

IV NCT02453477 Open
- Phase 1/2

b. Small molecule targets

New England
Research Institutes

Decitabine HbF induction - age ≥ 18
- TD β Thalassemia and
HbEβ-Thalassemia

Subcutaneously NCT00661726 Completed
- Phase 2

Medical College
Kolkata

Decitabine HbF induction - age ≥ 18
- TDT and NDTD HbEβ-
Thalassemia

Subcutaneously – Completed
- ASH 2017

Novartis
Pharmaceuticals

INC424 (Ruxolitinib) Jak 1/2 inhibitor - age ≥ 18
- TDT β- Thalassemia
- Splenomegaly
- iron chelation × 4 weeks

Oral NCT02049450 Completed
- Phase 2a

Acceleron ACE-536 (Luspatercept) Ligand trap TBG
beta superfamily

- age ≥ 18
- TD and NTDT β-Thalassemia

Subcutaneously NCT02268409 Active, not
recruiting
- Phase 2

Celgene ACE-011 (Sotatercept) Ligand trap TBG
beta superfamily

- age ≥ 18
- TD and NTDT β-Thalassemia

Subcutaneously NCT01571635 Active, not
recruiting
- Phase 2a

NTDT non-transfusion-dependent thalassemia
TDT transfusion-dependent thalassemia

Table 3 Novel therapeutics in Polycythemia Vera

Company Drug Mechanism Eligibility Route Clintrials.gov Status

Small molecules targets

Incyte Coproration
Novartis

Jak 1/2 inhibitor (ruxolitinib) vs BAT Cytoreduction - age≥ 18 years Oral NCT01243944 Active, not recruiting
- Phase 3

Incyte Jak 1/2 inhibitor (ruxolitinib) vs HU Cytoreduction - age≥ 18 years Oral NCT01632904 Completed
- Phase 3

AOP Orphan
Pharmaceuticals AG

Pegylated interferon alpha-2b
(AOP2014) vs HU

Cytoreduction - age≥ 18 years subcutaneously NCT01949805 Completed
- Phase 3

Roskilde University
Hospital,

Vorinostat Cytoreduction - age≥ 18 years Oral – Completed
- Phase 2

Italframaco Givinostat vs HU Cytoreduction - age≥ 18 years Oral NCT00928707 Completed
- Phase 2

BAT best available therapy
HU hydroxyurea
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Gene therapy
The following prerequisites are required for successful
gene therapy in β-hemoglobinopathies:

1) Efficient gene transfer with high HSC engraftment,
2) Consistent gene expression independent of the site

of integration,
3) High expression of globin gene expression (β or γ),
4) Erythroid lineage and developmental stage- specific

expression of transferred globin gene, safe
integration and expression of gene with little to no
risk of insertional oncogenesis (Chandrakasan and
Malik 2014).

Gene therapy exploits the ability of retroviruses (RV)
to reverse transcribe their RNA into complementary
DNA (cDNA) which can then be incorporated into the
host cell genome for therapeutic delivery of gene ele-
ments. Most successful gene therapy trials utilize lenti-
virus (LV) vectors as they possess the ability to enter
into an intact nucleus and integrate into non-dividing
cells. This results in high efficiency transduction of gen-
etic material. Furthermore, LVs are self-inactivating such
that all viral transcriptional machinery is removed once
genetic material is transfected into the host cell.
Hemoglobinopathies require sufficiently high levels of

globin genes expression for therapeutic correction, thus
posing an additional challenge for successful gene therapy.
Identification of critical regulatory elements required for
high β-globin gene expression has resulted in feasible gene
therapy options.
LV vectors carrying a modified β globin gene with

anti-sickling properties have been shown to be effective
in both SCD and β-thalassemia murine models (Persons
et al. 2001; Pawliuk et al. 2001). SCD patients with in-
creased levels of HbF have long been shown to have a
milder disease phenotype (Powars et al. 1989). Further-
more, fetal hemoglobin is a more potent anti-sickling
hemoglobin as compared to adult hemoglobin (Sunshine
et al. 1978), thus forming the basis for developing vec-
tors containing γ -globin gene cassettes. Several LV-
based vectors have been developed that utilize γ -globin
cassettes (Persons et al. 2003; Pestina et al. 2009) with
one model utilizing γ -globin coding sequences with
β-globin regulatory elements (Perumbeti et al. 2009).

Gene therapy in Thalassemia
The first successful correction of thalassemia with an
LV vector was reported in a murine model of β -thal-
assemia intermedia. There was an average increase in
hemoglobin by 3–4 g/dL per LV vector copy with cor-
rection of red cell indices (May et al. 2000). The first
successful human gene therapy trial was conducted in
June 2007 for a transfusion-dependent patient with

Hemoglobin E/β-thalassemia (HbEβ0). The patient re-
ceived a myeloablative conditioning regimen with bu-
sulfan followed by infusion with a SIN LV-based β
globin vector (βT87Q) – transduced into CD34+ cells.
The patient achieved transfusion-independence with a
stable hemoglobin of 8.5–9.0 g/dL by 2 years post infu-
sion. Insertion site analysis initially demonstrated clonal
expansion of erythroid cells (10–12%) at the high mobility
group AT-hook 2 (HMGA2) locus. While this clone
peaked at 4% of hematopoietic cells, it has since declined
to approximately 1% at 5 years post transplantation with-
out an associated reduction in total hemoglobin. The
leukemogenic potential of this clone is yet to be elucidated
(Cavazzana-Calvo et al. 2010). With enhanced LV vector
transduction efficiency, further data from this group have
demonstrated much higher transgene expression result-
ing in an increase in hemoglobin by 4–6 g/dL within
2–5 months following transplantation. At up to 3 years
follow up, no clonal events have been described for
these patients (Kwiatkowski et al. 2017).

Gene therapy in SCD
The first SCD patient treated with gene therapy was
conducted in a 13 year-old male on a chronic transfu-
sion program for recurrent VOCs, silent infarct, and
acute chest syndrome (ACS). Similarly, he received mye-
loablative conditioning with busulfan followed by infu-
sion with the βT87Q LV-based B-globin vector. The
subject did not experience any vector-related side effects
nor any SCD-related hospitalizations despite discontinu-
ing his chronic transfusion program. 30 months post
transplantation he was hospitalized for management of
VOC in the setting of an acute viral illness. His most
recent total hemoglobin is 12.4 g/dL with no evidence of
clonal dominance (Ribeil et al. 2017).
An additional nine patients with severe SCD have since

received the Lentiglobin drug product with a fully myeloa-
blative conditioning regimen. To date, there have been no
severe adverse effects attributable to the drug product
(Kanter et al. 2017). While longer term data is not yet
available for these subjects, two patients have discontin-
ued their chronic transfusion regimen with modest im-
provements in hemoglobin and stable expression of the
vector 6 months post infusion (Cavazzana et al. 2017).
Multiple clinical trials for gene therapy of β -thalas-

semia (Mansilla-Soto et al. 2016; Marktel et al. 2017)
or severe SCD (Archer et al. 2015) with lentiviral vec-
tors have since emerged from several centers. The major-
ity use a recombinant β-globin gene, with anti-sickling
properties for SCD, combined with a myeloablative condi-
tioning regimen. There is currently one open trial utilizing
a γ -globin vector for severe SCD); interim results are not
yet available.
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The predominant trend, overall, for these trials include
transfusion independence in β-thalassemia and amelior-
ation of disease phenotype in severe SCD. Transplantation
is generally well tolerated with side effects attributed to
the conditioning regimen and no major (≥ grade 3) toxic-
ities attributed to the LV vector.

Gene editing
Given ongoing safety concerns regarding oncogenesis
and clonal expansion following vector insertion into the
human genome, gene editing technologies remain an
attractive therapeutic modality. Genome-editing therap-
ies exploit the ability of the human genome to repair
itself following double-strand breaks (DSBs). DSBs are
repaired via homology-direct repair (HDR) pathways or
non-homologous end joining (NHEJ). The HDR pathway
is utilized to insert custom sequences into the genome
via an engineered endonuclease co-delivered with an
extrachromosomal repair template. These approaches
employ a transient ex vivo intervention and do not result
in permanent insertion of foreign DNA into the genome.
Currently, Zinc-finger nucleases (ZFN), transcription
activator-like effector nucleases (TALENs) and clus-
tered regulatory interspersed short palindromic repeat
(CRISPR/Cas) endouncleases are the systems available to
make site-specific DSBs. Early proof-of-concept studies
have been reported for ZFN and TALEN-mediated correc-
tion of α-thalassemia (Chang and Bouhassira 2012), β-
thalassemia (Ma et al. 2013) and SCD (Sebastiano et al.
2011). Similarly, high fidelity ß-globin gene editing has
been described utilizing CRISPR/Cas9 –based targeting in
SCD (Hoban et al. 2016; Dever et al. 2016).
With continued technique optimization, improved

editing efficiencies and cell viability have been achieved
to merit expansion into clinical trials. Lin et al. (2017)
describe their success with CRISPR/Cas9-based editing
of human primary hematopoietic stem and progenitor
cells (HSPCs). This technology was employed to re-
created specific genetic variations associated with her-
editary persistence of fetal hemoglobin to induce HbF
expression. HSPCs from healthy donors and patients
with SCD and β-Thalassemia demonstrated clinically
relevant increases in γ-globin mRNA that have persisted
at 16 weeks. Many additional pre-clinical studies utiliz-
ing primarily CRISPR/Cas9-based gene editing strategies
have emerged, which hold promise for translation into
clinical trials (deDreuzy et al. 2017; Lux et al. 2017;
Dever et al. 2017; Yu et al. 2017)
Inducible pluripotent stem cells (iPSC) utilize repro-

gramming of genes to induce the multilineage differenti-
ation potential of mature somatic cells. This system is
advantageous as it allows for screening of the ideal clone
with safe integration and high gene expression profile. In
vitro experiments with human iPSCs (hiPSCs) have been

hampered by their inability to demonstrate terminal eryth-
roid differentiation with mature, enucleated, β-globin- ex-
pressing erythroid cells. Utilizing optimized cell processing
techniques, Rosanwo et al. (2017) have generated condi-
tionally immortalized hematopoietic progenitors from SCD
patients, capable of robust terminal differentiation. When
transplanted into immunodeficient mice, these lines under-
went globin switching with a 27% induction of β- globin
expression. These results hold promise for future disease
modeling and development of novel therapeutic treatments
for all hemoglobinopathies.
This technology has been further developed via the

combination of hiPSC-based cell replacement therapies
with gene editing techniques for monogeneic disease
correction. This approach involves generating iPSCs
from patients with a disease of interest and utilizing the
above mentioned gene editing strategies i.e. TALEN,
CRISPR/Cas, ex-vivo to repair a mutated gene or in-
duce expression of protein necessary to remediate dis-
ease burden (Hockemeyer and Jaenisch 2016). Several
studies have been piloted for correction of SCD (Huang
et al. 2015; Sun and Zhao 2014) and β –Thalassemia
(Xu et al. 2015).

Small molecule targets
Jak inhibitors
In considering the importance of the JAK/STAT pathway
in erythropoiesis and in particular, phosphorylation of
STAT 5 during stress erythropoiesis, JAK inhibitors are
an obvious therapeutic target in disorders of erythropoi-
esis (Porpiglia 2012). Ruxolitinib is a selective JAK 1/2
inhibitor that was first approved in 2011 for use in mye-
lofibrosis. It was the first JAK inhibitor FDA approved
for clinical use and has since become the cornerstone of
treatment for intermediate or high-risk myelofibrosis
(Verstovsek et al. 2017).

Polycythemia Vera The discovery of the JAK2V617F mu-
tation in 2005 has led to a deeper understanding of the
molecular mechanism underpinning PV and has since
allowed for the development of targeted therapy options.
The safety and efficacy of ruxolitinib in patients with PV
with splenomegaly who are resistant to or intolerant of
hydroxyurea were explored in a phase III (RESPONSE)
clinical trial. Results demonstrated superiority as com-
pared to best available therapy in controlling hematocrit,
reducing spleen volume and improvement in symptoms
>including pruritis and night sweats. JAK2V617F allele
burden decreased from baseline and declined steadily
over time (maximal mean change, − 34.7% at week
112). Grade ≥ 3 toxicities were limited to anemia and
thrombocytopenia in 2 and 3% of patients, respect-
ively and 6% of patients developed herpes zoster in-
fections (0% in control arm) (Vannucchi et al. 2015).
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In the phase IIIb RELIEF trial, the benefit of switching to
ruxolitinib in patients with stable hematocrit on hydroxy-
urea but with persistent PV-related symptoms i.e. fatigue,
pruritis and muscles aches failed to demonstrate any
significant benefit (Mesa et al. 2017). The over-arching
relationship between JAK2V617F allele burden and disease
progression remains unclear, and warrants further
population-based cohort studies to assess this.
Phlebotomy and hydroxyurea remain the cornerstone

of treatment with the aim to prevent cardiovascular
complications via reduction of hematocrit and associated
blood viscosity. Ruxolitinib, is effective in patients who
are intolerant to phlebotomy/hydroxyurea or become
resistant and is currently approved as second line therapy.
Interferon-α has been shown to induce molecular remis-
sion via unclear mechanisms. A phase III clinical trial
comparing pegylated interferon α to hydroxyurea was
completed in July 2016. The trial demonstrated non-
inferiority for pegylated interferon α with a superiority
safety profile and increased rate of complete remission
following end of therapy (Gisslinger et al. 2016).

β -Thalassemia In their mouse model of thalassemia
major and thalassemia minor, Libani et al. (2008) dem-
onstrated a disproportionate percentage of erythroid
cells remaining in S phase with an immature erythro-
blast morphology. When treated with an oral Jak2 in-
hibitor, thalassemic mice experienced marked reduction
in spleen size and a decreased ratio of immature to ma-
ture erythroblasts. Several other murine studies have
demonstrated a significant remediation of their spleno-
megaly, with a trend towards normalization of the splenic
architecture and a decrease in the proportion of splenic
erythroid progenitors (Casu et al. 2011; Casu et al. 2016a).
A multicenter, single arm phase II clinical trial (TRUTH
study) using ruxolitinib for regularly transfused thalas-
semia patients demonstrated a trend towards reduction in
requirement for transfused RBCs and a slight increase in
the pre-transfusion hemoglobin. There was a reduction in
mean spleen volume from baseline (− 26.8% by week 30).
The drug was well tolerated with no significant safety
issues, however phase III clinical trials have not yet
commenced (Aydinok et al. 2016).

Activin Signalling
Activins are soluble ligands, expressed in various tissues
that belong to a large group of proteins called the trans-
forming growth factor β (TGF-β) family. Activin expres-
sion, particularly activin A and bone morphogenic protein
(BMP) 2 and 4 have been shown to have a role in the
regulation of erythropoiesis (Maguer-Satta et al. 2003).
Luspatercept (ACE-536) and Sotatercept (ACE-011) are
recombinant receptor antagonists that block the binding

of TFG-β family ligands to the ActrIIB and ActrIIA recep-
tors, respectively.

β-Thalassemia Early mouse studies utilizing murine
orthologs of these drugs demonstrated improved anemia
and increased maturation of erythroblasts consistent with
the amelioration of ineffective erythropoiesis (Langdon et
al. 2015; Carrancio et al. 2014; Suragani et al. 2014a; Sura-
gani et al. 2014b). These effects have been replicated for
both luspatercept and sotatercept in phase II clinical trials
for patients with β-thalassemia, demonstrating decreased
transfusion requirements in transfusion- dependent pa-
tients, an increase in hemoglobin among non-transfusion
dependent patients and a reduction in iron overload (as ev-
idenced by a decrease in liver iron concentration (LIC)).
Both drugs were generally well tolerated with no serious
adverse effects reported. The most common adverse ef-
fects were mild to moderate musculoskeletal pain and
headaches (No Author (2018); Piga et al. 2016; No au-
thor (2018)). A phase III, multi-center double-blind trial
(BELIEVE) is ongoing to evaluate the efficacy and safety of
luspatercept (ACE-536) in transfusion- dependent thalas-
semia patients (No author (2018)).

Histone deacetylase inhibitors
Histone deacetylases (HDACs) are part of a diverse group
of enzymes that regulate gene expression through chro-
matin modification. Histone acetylation relaxes chromatin
structure, thereby increasing the accessibility of transcrip-
tion factors to their target genes and increases gene
expression (Haberland et al. 2009).

Polycythemia Vera High levels of histone deacetylase
activity have been demonstrated in patients with PV
(Skov et al. 2012). Vorinostat is a pan-HDAC inhibitor
that has been shown in a phase II clinical trial to de-
crease the JAK2 V617F allele burden, reduce splenomeg-
aly and normalize the leukocyte and platelet counts. 52%
of patients discontinued the study drug before the end
of the study period due to unacceptable toxicity with the
most common side effects being diarrhea, fatigue renal
impairment, nausea and hair loss (Andersen et al. 2014).
Givinostat is an oral HDAC class I and II inhibitor that

is currently under investigation for efficacy and safety in
PV patients. Early phase II trials in patients unresponsive
to the maximal tolerated dose of hydroxyurea (HU)
demonstrated a significant hematologic response and
resolution of grade ≥2 pruritus and splenomegaly. The
combination of givinostat and HU was generally well tol-
erated, however premature study termination occurred
in 18% of patients and grade ≥ 3 toxicity occurred in
two patients (Finazzi et al. 2013).
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Sickle cell disease Preclinical studies have demon-
strated elevated Hb F with nonspecific HDAC inhibition
(Shearstone et al. 2016; Esrick et al. 2015). The safety
and tolerability of vorinostat was recently demonstrated
in a phase 1 study of 5 sickle cell patients. Although only
1 patient met criteria for success (4% absolute increase
or a 100% relative increase in HbF %), the drug was well
tolerated and a phase II trial is warranted to establish an
optimal dosing profile (Okam et al. 2015). A phase I
clinical trial is currently in process for panobinostat, a
pan-HDAC inhibitor in adult patients with severe SCD.
Preliminary results are not yet available. Lastly, at low,
non-toxic concentrations, Givinostat was shown to in-
duce HbA and HbF in erythroid cells from SCD patients
at a level comparable to that of HU and butyrate. These
results support the need for further evaluation of givino-
stat as a new candidate molecule for the treatment of
hemoglobinopathies.
Other HDAC inhibitors including derivatives of butyr-

ate have shown efficacy in clinical studies but are limited
by the need for parenteral administration (Atweh et al.
1999; Perrine et al. 1993; Pace et al. 2002). 2,2-dimethyl-
butyrate (HQK-1001) is the first oral butyrate derivative
that that initially showed promise in pre-clinical trials.
Unfortunately, the phase II clinical trial (NCT01601340)
was terminated after interim analysis did not show any
significant increase in fetal hemoglobin and worsening
VOC in the experimental group (Reid et al. 2014).

Hypomethylating agents
DNA-methyl transferases are a family of enzymes that
catalyze the transfer of methyl groups to cytidine nu-
cleotides of genomic DNA. DNA-methyl transferase 1
(DNMT1) is a chromatin-modifying enzyme that main-
tains methylation marks on DNA throughout cell division.
Methylation of DNA is important for epigenetic gene
regulation and has been shown to silence genes that direct
the epigenetic silencing of the HbF gene, specifically
BCL11A (Zhou et al. 2010). 5- azacitidine and 5-aza-2′-
deoxycytidine (decitabine) are cytidine analogues that
cause DNA hypomethylation via inhibition of DNMT1
and can lead to an increase in HbF. Decitabine is FDA
approved for the treatment of myeloid malignancies, how-
ever it can cause cytotoxicity at high doses.

Sickle cell disease In small scale animal (DeSimone et
al. 1982) and patient studies (Ley et al. 1983; Charache
et al. 1983), decitabine and 5’azacitidine have been
shown to successfully increase fetal hemoglobin produc-
tion in patients with SCD. The first human clinical trial
aimed to pharmacologically re-induce HbF via DNMT1
inhibition began in September 2012. The phase I trial
combined decitabine (to deplete DNMT1) with tetrahy-
drouridine (to increase decitabine half-life and subsequent

oral-bioavailability). This oral combination was well
tolerated without any significant (≥ grade 3) toxicities
encountered. Furthermore, decitabine produced sig-
nificant increases in fetal hemoglobin with an in-
creased proportion of HbF-enriched RBCs (F-cells)
(Molokie et al. 2017). Further clinical trials are war-
ranted to establish optimal dosing.

β-Thalassemia The first trial examining the use of
DNA hypomethylating agents in HbF induction was
conducted by DeSimone et al. (DeSimone et al. 1982)
utilizing 5-azactydine in phlebotomized baboons. A
significant increase in HbF was noted within 5 days of
therapy, which prompted Ley et al. (Ley et al. 1982) to
test 5-azacytidine in a patient with severe β-Thalassemia.
Within 7 days of treatment, γ -globin synthesis increased
seven-fold and the patient demonstrated an increase in
hemoglobin (8.0–10.8 g per deciliter). Due to ongoing
safety concerns including myelosuppression, immunosup-
pression and cytotoxicity, subsequent use of 5-azacytidine
has been limited to severe cases when conventional
therapy is not feasible. Several small case reports have
consistently reported rapid and favorable effects on HbF
production and hematologic outcomes. Myelotoxicity re-
quiring dose modification was the main adverse effect
(Dunbar et al. 1989; Lowrey and Nienhuis 1993).
In their pilot study using decitabine for the treatment

of hemoglobinopathies, Olivieri et al. (2011) demon-
strated a modest improvement in total hemoglobin and
HbF from baseline in all 5 patients. Furthermore, there
was an overall decrease in the markers of ineffective
erythropoiesis such as indirect bilirubin, LDH and re-
ticulocyte count. The drug was well tolerated with the
major side effect limited to an asymptomatic increase in
platelet count.
The results of these studies are promising, however little

progress has been made in developing larger scale clinical
trials in order to truly study the benefits of HbF induction
in hemoglobinopathies. Recently, Decitabine was trialed in
both transfusion-dependent and transfusion-independent
HbEβ-Thalassemia patients. The drug was efficacious in
increasing HbF percentage in both groups and transfusion-
dependent patients demonstrated an overall decrease in
transfusion requirement. The drug was well tolerated with
no documented hematologic toxicity (Kalantri et al. 2017)

Immunomodulatory drugs
Thalidomide is an FDA-approved immunomodulatory
drug, originally developed for use in patients with mul-
tiple myeloma (MM). Lenalidomide (Len) and Pomalido-
mide (Pom) are newer generation analogs of thalidomide
that have increased activity in multiple myeloma with an
improved side effect profile. Len and Pom have been
shown to reduce the transfusion burden in patients with

Zivot et al. Molecular Medicine  (2018) 24:11 Page 10 of 15



MM and myelodysplastic syndrome (MDS) (Tefferi et
al. 2009; Raza et al. 2008), making this an attractive
class of drug for the potential treatment of the
hemoglobinopathies.

Sickle cell disease Len and Pom were shown to be potent
inducers of HbF during erythroid differentiation in both a
murine model of SCD (Meiler et al. 2011) and in in vitro
human CD34+ cells from SCD donors (Moutouh-de
Parseval et al. 2008). A phase 1 clinical trial examining the
effects of Pom in severe SCD adult patients was completed
in October 2012 and found elevated levels of HbF, F-cells
and total Hb with no significant adverse effects (Swerdlow
et al. 2013). Dulmovits et al. (2015) further demonstrated
that Pom reverses γ -globin silencing via transcriptional
reprogramming of early adult erythroid progenitors. The
drug is promising, and could potentially be used for the
induction of fetal hemoglobin which could be clinically
beneficial to patients with SCD.

β-thalassemia Based on the pre-clinical studies in SCD,
several isolated case reports using thalidomide and its
derivatives for patients with β-thalassemia major have
recently emerged. All of these case reports demonstrate
an improvement in hemoglobin and an increase in HbF;
the drugs have been very well tolerated with an im-
provement in the overall clinical status of the patients
(Aguilar-Lopez et al. 2008; Masera et al. 2010).

SIRT
SIRT 1 encodes a nicotinamide adenosine dinucleotide
(NAD)- dependent deacetylase that functions to remove
acetyl groups from many histone and non-histone pro-
teins (Haigis and Guarente 2006). SIRT1 has been shown
to have an important role in transcriptional regulation,
including direct deacetylation of histones. SIRT1 can
therefore promote alterations in the methylation of
histones and DNA leading to repression of gene tran-
scription. Dai et al. (Dai et al. 2017) sought to investigate
whether SIRT1 plays a role in gamma globin gene
repression. In their in vitro study, SIRT1 was shown to
enhance gamma globin gene expression in cord blood
human erythroblasts and reactivate silenced gamma glo-
bin genes in adult erythroblasts. Furthermore, SIRT1
was shown to β-globin gene cluster locus control region
(LCR) looping to the HbF promoter, inhibiting the ex-
pression of known HbF suppressors, BCL11A, KLF1,
HDAC1 and HDAC2. This early data suggests a role for
SIRT1 in modulating gamma globin production via tran-
scriptional reprogramming and its activators are poten-
tial therapeutic targets for induction of HbF. Clinical
trials are warranted to assess the translational potential
of this therapeutic modality.

Targeting iron overload
Iron is critical for hemoglobin synthesis and plays a key
role in the regulation of erythropoiesis. Patients with
SCD and β-thalassemia frequently are treated with
chronic transfusions resulting in significant iron over-
load and organ toxicity. Effective iron chelators exist,
however require long-term use and efficacy is hindered
by poor compliance The liver antimicrobial peptide hep-
cidin (HAMP) is the master regulator of systemic iron
homeostasis. HAMP facilitates surface expression of
ferroportin, an iron export protein that is largely
expressed in enterocytes, hepatocytes and macrophages,
and facilitates iron absorption (Nemeth et al. 2004b).
HAMP signaling is regulated by the BMP-Son of

mothers against decapentaplegic (SMAD) signaling path-
way which is further modulated by total body iron avail-
ability. Hemojuvelin (HJV) functions as a co-receptor
and is required to fully activate the SMAD signaling
pathway (Babitt et al. 2006). During inflammatory states,
IL-6 and STAT 3 pathways have also been shown to
modulate HAMP signaling (Wrighting and Andrews
2006). SMAD signaling is negatively regulated by trans-
membrane protease serine 6 (TMPRSS6), a serine prote-
ase that cleaves HJV, reducing the phosphorylation of
SMAD and dampening HAMP expression (Babitt et al.
2006). Homozygous mutations in TMPRSS6 lead to
iron-refractory iron deficiency anemia in humans (De
Falco et al. 2010). HAMP is overexpressed in humans
with β-thalassemia (Papanikolaou et al. 2005), making it
an attractive therapeutic target to decrease iron overload
and help ameliorate ineffective erythropoiesis.
Blockade of TMPRSS6 in β-thalassemia intermedia mice

has demonstrated an increase in HAMP mRNA as well as
significant decrease in biomarkers of iron overload (serum
iron, transferrin concentration, LIC and spleen weight). It
has also been suggested to ameliorate ineffective erythro-
poiesis as evidenced by improved anemia, decreased alpha
chain aggregates and increased proportion of mature
erythroid progenitors (Guo et al. 2013; Nai et al. 2012;
Schmidt et al. 2013). Additional murine studies have
examined the additive effects of combining TMPRSS6
blockade with conventional oral iron chelation. Results
demonstrate improvement in anemia and a decrease in
iron overload; however, the effects, while greater than oral
chelation alone, are not additive as compared with the sole
blockade of TMPRSS6 (Casu et al. 2016b; Schmidt et al.
2015). To date, TMPRSS6 blockade has not been trialed in
human studies.
Erythroferrone (ERFE), is a newly described erythroid

regulator that is produced by erythroid precursors and
has been shown to be involved in the regulation of
hepcidin expression. ERFE expression is greatly in-
creased in a murine model of β-Thalassemia which
contributes to hepcidin suppression and subsequent iron
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overload characteristic of this disease (Kautz et al. 2014).
Additional studies have demonstrated that ablation of
ERFE in ß-Thalassemia mice can fully restore hepcidin
levels and normalize iron regulation (Kautz et al. 2015).
The suppression of ERFE may be a future therapeutic
target that could be used alone or in conjunction with
conventional chelators to ameliorate anemia and combat
iron overload.

Conclusion
The past 20 years have seen tremendous advancements
in knowledge of the regulation of steady state erythro-
poiesis and in that context advancement in the under-
standing of the myriad molecular mechanisms leading to
disordered erythropoiesis. As a consequence, multiple,
novel therapeutic modalities are currently in clinical tri-
als, many but not all, with promising results. In particu-
lar many of these new drugs target erythroid signaling,
inductive a suppressive as well as the epigenetic regula-
tion of globin gene synthesis. Furthermore, advance-
ments in lentiviral-mediated gene therapy offer an
exciting paradigm shift in treatment options as well as a
promise of cure. Further clinical trials are required to
expand the scope of these new therapeutic developments
for clinical use.
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