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Abstract

Diamond-Blackfan anemia (DBA) is a rare congenital hypoplastic anemia
characterized by a block in erythropoiesis at the progenitor stage, although
the exact stage at which this occurs remains to be fully defined. DBA
presents primarily during infancy with macrocytic anemia and
reticulocytopenia with 50% of cases associated with a variety of congenital
malformations. DBA is most frequently due to a sporadic mutation (55%) in
genes encoding several different ribosomal proteins, although there are
many cases where there is a family history of the disease with varying
phenotypes. The erythroid tropism of the disease is still a matter of debate
for a disease related to a defect in global ribosome biogenesis. Assessment
of biological features in conjunction with genetic testing has increased the
accuracy of the diagnosis of DBA. However, in certain cases, it continues to
be difficult to firmly establish a diagnosis. This review will focus on the
diagnosis of DBA along with a description of new advances in our
understanding of the pathophysiology and treatment recommendations for
DBA.
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Introduction

Diamond-Blackfan anemia (DBA) was described for the first
time in the 1930’s as a constitutional hypoplastic anemia'~.
There was a gap of almost 60 years after the first description of
the disease™ before the first gene was identified in DBA, namely
ribosomal protein (RP) S19 (RPS19) in 1999°. Surprisingly, for
a disease in which the major defect is disordered erythropoiesis,
the genes involved in the disease belong to both small and large
subunits of the ribosome, which would be expected to have
widespread consequences. The mutant RP is responsible for
a defect in rRNA maturation, which is the signature feature
for most DBA cases. DBA was indeed described as the first
ribosomopathy in 2005°. Since this original classification, the
actual definition of DBA is evolving with further developments
in the genetic basis for the disorder, with the discovery of new
DBA genes that are not directly involved in ribosome biogenesis.
In this review, we will update these new insights into our
understanding of DBA.

Clinical features

DBA typically presents in infancy, most commonly with pallor
and lethargy, at an estimated incidence of seven cases per
million live births within some families who have a history of
the disease. The median age at presentation is 8 weeks, with a
median age at diagnosis of 12 weeks. There have been cases of
hydrops fetalis®’. The male-to-female ratio of cases is approxi-
mately 1:1 despite rare cases of X-linked inheritance. More than
90% of the reported cases present clinically by 1 year of age.
DBA is characterized by a macrocytic moderate or severe anemia
in association with aregenerative bone marrow and reticulocyto-
penia. The disorder is also characterized by elevated erythrocyte
adenosine deaminase (eADA) activity in over 75% of cases.

The DBA Registry of North America (DBAR), a database of
more than 700 patients, was established in 1991 and provides
important information regarding the epidemiology and biology
of DBA*"”. Almost half of patients exhibit physical abnormali-
ties, except short stature, which is a known feature of DBA but
could also be a result of chronic anemia, iron overload, corticos-
teroid administration, or a combination of all three. Included
in the constellation of physical anomalies are a high number
of craniofacial anomalies (50% of patients), upper limb and
hand—in particular thumb (38%)—abnormalities, and genitouri-
nary (39%) as well as cardiac (30%) abnormalities.

DBA is recognized as a cancer predisposition syndrome with
an observed to expected ratio for all cancers of 5.4. The most
common malignancies were MDS, AML, colon carcinoma,
osteosarcoma, and genitourinary cancers'*".

Of interest, there appears to be no genotype—phenotype
correlation with regard to steroid responsiveness, remission,
or cancer predisposition. However, RPL5 gene mutations have
been associated with cleft palate malformation and are the most
important rate of malformations in DBA cases'®'’, while RPLII
mutations are associated with the classic triphalangeal thumb'’.
Recently, mutations in the RPLI5 gene have been identified
in cases of hydrops fetalis in DBA patients’, and RPL35a gene
mutations are associated with neutropenia.

F1000Research 2018, 7(F1000 Faculty Rev):1350 Last updated: 30 JAN 2020

Biological features

DBA is one of the inherited bone marrow failure (IBMF)
syndromes that include Fanconi anemia, Shwachman—Bodian—
Diamond syndrome, dyskeratosis congenita, and cartilage hair
hypoplasia'®**. All of these syndromes have a quantitative
defect in hematopoiesis. Among the IBMF syndromes, DBA is
unique in that it involves a specific intrinsic quantitative defect
in erythropoiesis™.

There is strong evidence that the erythroid blockage likely
occurs between the BFU-e and CFU-e stage of erythroid
development”. Tt should be noted that some previous reports have
suggested a general blockade upstream during hematopoiesis,
since long-term culture experiments have shown a defect in
megakaryocytic and granulocytic progenitors’”* and there are
rare cases of DBA which progress to a complete aplasia'**.

The erythroid blockade is responsible for the erythroblastope-
nia characterized by the absence or less than 5% of erythroid
progenitors in the bone marrow aspirate or an important
paucity of the erythroid progenitors in the bone marrow biopsy in
an otherwise normal bone marrow with no qualitative
dyserythropoiesis or defects in other hematopoietic cell lineages.
Neutropenia and thrombocytopenia, and in some instances throm-
bocytosis, have been described at diagnosis or during DBA
evolution, implying that DBA diagnosis should not be ruled
out when these particular blood cell anomalies are noted
at DBA presentation.

Strikingly, DBA is associated with an increased eADA
activity’. eADA 1is a critical enzyme of the purine salvage
pathway, which enables the deamination of adenosine in inosine
and 2’-deoxyadenosine deamination in deoxyinosine. In the
French registry of over 300 DBA patients, eADA has been
found to be elevated in 90% of non-transfused DBA patients as
reported in a previous study® and in 75% of DBA patients from
the American registry with a sensitivity of 84%, specificity of
95%, and positive and negative predictive values of 91% for the
diagnosis of DBA compared with other IBMF syndromes’'.
While an elevated eADA activity is a strong feature of DBA,
it is also increased in some leukemias, lymphomas, and
immune system disorders™. The challenge in performing
eADA testing is that the test is not routinely available and is
currently performed in only one lab in each of the following
countries: the USA, France, Germany, Italy, Poland, Israel, and
Turkey®”. It should be noted that the test needs to be per-
formed on fresh blood samples or samples stored at 4°C for less
than a few days and on samples prior to red cell transfusions.

In order to eliminate the most frequent differential diagnosis,
namely a parvovirus B19 infection, parvovirus B19 serology
(IgM/1gG) or parvovirus B19 PCR in the blood (or in the bone
marrow, which has a higher sensitivity) is mandatory.

The other biological tests that may be useful in DBA diagnosis
are 1) the erythropoietin (EPO) level, which is consistently
elevated in DBA as a result of a lack of effective erythropoiesis
with a normal kidney response to the anemia and a quantitative
deficiency of the EPO receptors that bind EPO due to the large
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decreases in the number of erythroid precursors, and 2) immu-
nophenotyping and IgG/IgA agglutinin titer. A DAT test in asso-
ciation with an erythroid clonogenic in vitro culture assay with
and without the patient’s sera may be helpful in rare cases,
mostly in  adults, in order to eliminate immune
erythroblastopenia in doubtful DBA cases.

Molecular diagnosis

The first gene associated with DBA was identified in 1999
in a Swedish patient with DBA** who carried a balanced trans-
location between the chromosomes X and 19. Since DBA
exhibits a 1:1 sex ratio, it was thought unlikely to be of X-linked
inheritance, and the candidate gene in 19q chromosomal break-
point was explored and identified. Surprisingly, for a disease
with an erythroid tropism, the identified gene was an RP from
the small ribosome subunit gene RPSI9. Subsequently, muta-
tions or deletions in 19 other RP genes have been identified
by whole exome/genome sequencing and CGH/SNP array.
These include RPLS5, RPLI11, RPL35a, RPS10, RPS24, RPSI7,
RPL15, RPS28, RPS29, RPS7, RPSI5 RPS27a, RPS27,
RPL9, RPLIS, RPL26, RPL27, and RPL31 as well as three
other non-RP genes, TSR2, GATAI, and EPO (Table 1,
Figure 1, and *'®"759=9) Tt is still debated if the disease
associated with non-RP genes is classical DBA or “DBA-like”
disease.

DBA is thus a polygenic disease with mutations in 20 of
the 80 RP genes that code for the complete ribosome. Interestingly,
mutations including deletions in six of 20 identified genes, namely
RPS19, RPL5, RPS26, RPLII, RPL35a, and RPS24, account
for 70% of all DBA cases (Figure 1). Some RP gene mutations
exhibit a phenotype—genotype relationship (see “clinical features”
above). All the RP mutations identified to date are hetero-
zygous; homozygosity is thought to be lethal, which has been
confirmed in zebrafish and murine models of DBA®. Multiple
pathogenic RP mutations have not been reported in any DBA
patient to date. Except for RPS19°', no hot spot regions in the
DBA genes have been reported. Various types of mutations may
be associated with DBA phenotype, although most RPS/9 gene
mutations are missense mutations, while nonsense mutations
are more frequent in RPL5- and RPLII-associated DBA. Large
deletions have been reported in 20% of patients, which makes
large deletions the second most frequent genetic defect after
RPS19 gene mutation (25%) in DBA.

With regard to the “non-RP” genes linked to DBA, TSR2 is
known to play a role in ribosome biogenesis, since it is involved
in the pre-rRNA processing and binds to RPS26. GATALI
is the major erythroid transcription factor and plays a critical
role in regulating normal erythroid differentiation by activating
an array of erythroid genes. Ludwig ef al”® have shown that
GATAL1 transcripts are specifically less translated compared to
others in DBA owing to a higher threshold for initiation of trans-
lation of GATA1 mRNA due to defective ribosomal biogenesis.
Gastou et al> showed that HSP70, the chaperon of GATAI,
is degraded by the proteasome following polyubiquitination
during the BFU-E and CFU-E stages of erythropoiesis. Decreased
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Table 1. Genes involved in Diamond-Blackfan anemia
(DBA) from the most mutated to reported cases,
incidence, and references.

Incidence in DBA

Mutated gene population References
RPS19 25% Draptchinskaia et al.*
Willig et al.”’
Ramenghi et al.*®
Cmejla et al.*®
Proust et al.*’
Campagnoli et al.*®
Large 10-20% Gustavsson et al.*®
deletions Quarello et al.®®
Farrar et al.*®
Quarello et al.*®
Kuramitsu et al.*®
RPL5 7% Gazda etal.'”
Cmejla et al.'®
Quarello et al.®!
RPS26 6.6% Doherty et al.*’
RPL11 5% Gazda etal.'”
Cmejla et al.'®
Quarello et al.®!
RPL35a 3% Farrar et al.*
RPS10 3% Doherty et al.*’
RPS24 2.4% Gazda et al.”!
RPS17 1% Cmejla et al.*?
Song et al.*
RPL15 One case Landowski et al.*°
Six cases Wlodarski et al.”
RPS28 Two families Gripp et al.*
RPS29 Two families Mirabello et al.*
RPS7 One case Gazda et al.'”
RPS15 One case Gazda et al.'”
RPS27a One case Gazda et al.'”
RPS27 One case Wang et al.*®
RPL9 One case Gazda et al.'”
Two cases euroDBA group, in
preparation
RPL18 One family Mirabello et al.*
RPL26 One case Gazda et al.®®
RPL27 One case Wang et al.*®
RPL31 One case Farrar et al.*®
TSR2 (X- One family Gripp et al.”*
linked)
GATAT (X- Five families Sankaran et al.*®
linked) Klar et al."
Ludwig et al.*®
Parrella et al.%
EPO One case Kim et al.*
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Figure 1. Representation of the frequency of the mutated genes involved in Diamond-Blackfan anemia (DBA) from DBA-affected

populations all over the world (literature data).

HSP70 expression has been noted in all of the RP mutated-
gene-tested DBA patients and in shRNA models other than
RPS19, which exhibit a normal expression of HSP70. This cor-
relates perfectly with the low level of induced apoptosis in
these RPS19-mutated DBA patients compared to the RPLS5- or
RPL11-mutated ones. Interestingly, HSP70 degradation is respon-
sible for caspase-3-dependent GATA1 cleavage during terminal
erythroid differentiation and the resultant decreased GATAI1
protein expression at late stages of erythroid differentiation™.
Finally, the EPO gene has been found to be mutated in one
consanguineous Turkish family in the USA, with a homozygous
missense mutation in exon 5 of EPO. The pathogenicity of
this mutation has been validated in vitro by functional analysis
with a well-established defect in erythroid proliferation and
differentiation*.

Following detailed mutational screening analysis using vari-
ous methods, no molecular defect can be documented in 20 to
30% of DBA cases. It is likely that mutations in a regulatory region
including intronic regions and promoters in one of the known
RP genes may account for the DBA phenotype. It is also impor-
tant to emphasize that the first step in molecular diagnosis should
always be to characterize the phenotype including family
history, pregnancy complications, congenital malformations, and
characteristics of the anemia including an evaluation of the bone
marrow, which we still believe is an essential part of the evalu-
ation. Indeed, hypoplastic anemia can be seen as a part of some
congenital dyserythropoietic anemias (CDAs)*” and acquired
minus 5q syndrome’; therefore, the frontier between DBA
and these syndromes may sometimes be difficult to ascertain
without a meticulous clinical and microscopic examination
by an expert hematologist and hematopathologist.

DBA pathophysiology
In terms of the history of insight into DBA as a disease, there
was widespread use of erythroid cell cultures from the 1950’s

to the end of the 1990’s prior to the advent of the molecular
biological approaches. In the earlier stages, immune mechanisms
(humoral or cell-mediated immune inhibition by T-cytotoxic or
T-helper lymphocytes) were thought to play a role in the patho-
physiology of DBA owing to the effectiveness of corticosteroid
therapy in correcting the anemia phenotype’ . However,
no conclusive evidence in support of immune-meditated
suppression of erythropoiesis could be documented.

A defective microenvironment as a major cause of DBA
pathophysiology was also ruled out because of the effective-
ness of bone marrow transplantation as a curative treatment in
DBA and also from findings that documented normal erythroid
proliferation of control CD34* cells cultured in a DBA
microenvironment*’*. DBA can thus be defined as an intrinsic
defect in erythropoiesis due to defective ribosome processing.
However, the exact stage at which blockade occurs during eryth-
ropoiesis still needs to be fully defined. The best documented
study”® implies a blockade between the BFU-E and the CFU-E
stages or between the EPO-independent and the EPO-dependent
stages of erythroid development. However, data from erythroid
culture studies from DBA patients are highly heterogeneous
and depend on a number of variables including the erythroid
culture methods used. There is, however, some convincing
evidence that different RP mutations exhibit significant
differences in the erythroid proliferation phenotype™’>.

The major unresolved questions in DBA remain how a
defect in RP is responsible for a specific defect in erythropoiesis
and why there is a different penetrance of the same mutation
among different individuals. Red blood cells do exhibit
a high level of cell production (2 x 10''/day) in humans, and the
level of protein translation needed is indeed very high, which may
explain, in part, the erythroid tropism of DBA. In this context,
any factor that affects GATA1 expression would be deleterious
in DBA as well. Indeed, HSP70*, and the recently reported
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ribonuclease inhibitor 1 (RNH1)” that binds to the 40S ribosome
small subunit, could be involved in the translational control of
GATA1 and consequently affect erythropoiesis, resulting in
the DBA phenotype. In addition, ribosome amounts have
been shown to be critical for the cell lineage commitment.
Recently, a global reduction in ribosome levels in DBA has been
documented, while the ribosome composition was normal,
which altered the translation of specific RNA transcripts’’. These
exciting new discoveries are enabling the establishment of a
link among a mutated RP gene, a defect in ribosome biogenesis,
and the specific effect on erythropoiesis in DBA.

p53 also plays an important role in DBA pathophysiology,
with p53 activation and the altered expression of its targets (p21,
Bax, noxa) having been documented in erythroid cells from
affected patients and in CD34* cord blood erythroid progenitors
following lentiviral transfection with various shRNAs targeting
RPS19, RPL5, or RPLII transcripts’™’. The relationship
between p53 and GATAIl is well established, with GATAl
inhibiting p53”™. It has also been shown that wild-type HSP70
overexpression, by restoring GATA1, was also able to decrease
p53 activation (phosphorylated p53) in RPLS5- and RPL11-depleted
erythroid cells™. Decreased expression of GATA1 may thus account
for p53 activation in DBA. Indeed, activation of p53 in DBA
may be due to not only the nucleolar stress and overexpression
of some RPs (RPS3, RPS7, RPS27, RPS27a, RPL5, RPLI11,
and RPL23), which are able to directly bind MDM2 in order to
release the p53/MDM2 binding, but also the defect in GATAIL
in DBA.

Another level of complexity in DBA involves the role of
free excess heme in DBA pathophysiology due to imbalance
between decreased globin synthesis and excess of free heme,
which can generate reactive oxygen species and increased apop-
tosis, leading to the death of erythroid progenitors and precur-
sors. Autophagy and cell metabolism have also been shown to
be important in DBA pathophysiology***'.

Thus, it appears that deciphering the complex interplay
between the multiple mechanisms identified to date, and perhaps
others yet to be discovered, is needed to develop detailed
understanding of the documented variations in clinical severity of
the highly heterogeneous DBA phenotype.

Therapeutic options

The current standard of care for DBA includes corticosteroids
and/or chronic transfusions with the only definitive treatment
(for the hematologic complications) being bone marrow trans-
plantation. Approximately 80% of patients respond initially to
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corticosteroids with an improvement in, or complete remission
of, their anemia. However, prolonged corticosteroid treatment
has been problematic for many patients such that only about
40% will remain on corticosteroids for a considerable period of
time. With existing treatments, the overall survival of patients,
as reported by the DBAR, is 75% at 40 years of age; median
overall survival is 58 years. As our understanding of the patho-
physiology of the ribosomopathies increases, the goal is to be
able to translate these findings into novel therapeutic options
for patients with DBA.

Recently, the use of hematopoietic stem cell transplantation
(HSCT) in DBA patients is increasing and has provided
encouraging results. August and colleagues reported the first
successful transplant for DBA in 1976*. Alter reviewed stem
cell transplantation in DBA in 1998%; in an analysis of 35 of
the 37 cases reported until that point, the actuarial survival for
primarily allogeneic HLA-matched donor transplants was 66%.
Recent work has proposed that this figure is approximately
90% for matched, related HSCT in young, otherwise healthy
patients®"®, The latest analysis from the DBAR found that HLA-
matched related-donor transplant resulted in an overall survival
of 76.9 = 8.4% and, for patients aged 9 years or younger,
survival was 93.8 + 6.1%. In transplants from an unrelated
donor, the overall survival showed an improvement: in 1994 to
1999, it was reported to be 32.1 + 11.7%, and in 2000 to the
present, it was 85.7 = 13.2%'. A “How I Treat” article by
Vlachos and Muir® provides a detailed approach to the treatment
of DBA. There are also several open clinical trials (details
available at clinicaltrials.gov) for patients with DBA and more
in development.

Conclusion

DBA, a rare congenital hypoplastic anemia characterized by
a block in erythropoiesis, is most frequently due to a sporadic
mutation in genes encoding several different RPs. DBA was
indeed the first identified human ribosomopathy’. The erythroid
tropism of the disease is still a matter of debate for a disease
related to a defect in global ribosome biogenesis. Assessment of
biological features in conjunction with genetic testing have increased
the accuracy for the diagnosis of DBA. The current standard
of care for DBA includes corticosteroids and/or chronic
transfusions, with the only definitive treatment being bone
marrow transplantation.
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