594 research outputs found
A statistical analysis of some non-linear optical effects
Statistical analysis of some nonlinear optical effects including scattering light from rotating glass and second harmonic light generated by pseudo-thermal sourc
Off-resonance energy absorption in a linear Paul trap due to mass selective resonant quenching
Linear Paul r.f. ion traps (LPT) are used in many experimental studies such
as mass spectrometry, atom-ion collisions and ion-molecule reactions. Mass
selective resonant quenching (MSRQ) is implemented in LPT either to identify a
charged particle's mass or to remove unwanted ions from a controlled
experimental environment. In the latter case, MSRQ can introduce undesired
heating to co-trapped ions of different mass, whose secular motion is off
resonance with the quenching ac field, which we call off-resonance energy
absorption (OREA). We present simulations and experimental evidence that show
that the OREA increases exponentially with the number of ions loaded into the
trap and with the amplitude of the off-resonance external ac field.Comment: 14 figure
Model-independent measurements of the sodium magneto-optical trap's excited-state population
We present model-independent measurements of the excited-state population of
atoms in a sodium (Na) magneto-optical trap (MOT) using a hybrid ion-neutral
trap composed of a MOT and a linear Paul trap (LPT). We photoionize excited Na
atoms trapped in the MOT and use two independent methods to measure the
resulting ions: directly by trapping them in our LPT, and indirectly by
monitoring changes in MOT fluorescence. By measuring the ionization rate via
these two independent methods, we have enough information to directly determine
the population of MOT atoms in the excited-state. The resulting measurement
reveals that there is a range of trapping-laser intensities where the
excited-state population of atoms in our MOT follows the standard two-level
model intensity-dependence. However, an experimentally determined effective
saturation intensity must be used instead of the theoretically predicted value
from the two-level model. We measured the effective saturation intensity to be
for the type-I Na MOT and
for the type-II Na MOT,
approximately 1.7 and 3.6 times the theoretical estimate, respectively. Lastly,
at large trapping-laser intensities, our experiment reveals a clear departure
from the two-level model at a critical intensity that we believe is due to a
state-mixing effect, whose critical intensity can be determined by a simple
power broadening model.Comment: 10 pages, 8 figure
Application of a High-Fidelity Icing Analysis Method to a Model-Scale Rotor in Forward Flight
An icing analysis process involving the loose coupling of OVERFLOW-RCAS for rotor performance prediction and with LEWICE3D for thermal analysis and ice accretion is applied to a model-scale rotor for validation. The process offers high-fidelity rotor analysis for the noniced and iced rotor performance evaluation that accounts for the interaction of nonlinear aerodynamics with blade elastic deformations. Ice accumulation prediction also involves loosely coupled data exchanges between OVERFLOW and LEWICE3D to produce accurate ice shapes. Validation of the process uses data collected in the 1993 icing test involving Sikorsky's Powered Force Model. Non-iced and iced rotor performance predictions are compared to experimental measurements as are predicted ice shapes
Ion-neutral sympathetic cooling in a hybrid linear rf Paul and magneto-optical trap
Long range polarization forces between ions and neutral atoms result in large
elastic scattering cross sections, e.g., 10^6 a.u. for Na+ on Na or Ca+ on Na
at cold and ultracold temperatures. This suggests that a hybrid ion-neutral
trap should offer a general means for significant sympathetic cooling of atomic
or molecular ions. We present SIMION 7.0 simulation results concerning the
advantages and limitations of sympathetic cooling within a hybrid trap
apparatus, consisting of a linear rf Paul trap concentric with a Na
magneto-optical trap (MOT). This paper explores the impact of various heating
mechanisms on the hybrid system and how parameters related to the MOT, Paul
trap, number of ions, and ion species affect the efficiency of the sympathetic
cooling
Coexistence of single-mode and multi-longitudinal mode emission in the ring laser model
A homogeneously broadened unidirectonal ring laser can emit in several
longitudinal modes for large enough pump and cavity length because of Rabi
splitting induced gain. This is the so called Risken-Nummedal-Graham-Haken
(RNGH) instability. We investigate numerically the properties of the multi-mode
solution. We show that this solution can coexist with the single-mode one, and
its stability domain can extend to pump values smaller than the critical pump
of the RNGH instability. Morevoer, we show that the multi-mode solution for
large pump values is affected by two different instabilities: a pitchfork
bifurcation, which preserves phase-locking, and a Hopf bifurcation, which
destroys it.Comment: 14 pages, 7 figure
T Cell Leukemia/Lymphoma 1A is essential for mouse epidermal keratinocytes proliferation promoted by insulin-like growth factor 1
T Cell Leukemia/Lymphoma 1A is expressed during B-cell differentiation and, when overexpressed, acts as an oncogene in mouse (Tcl1a) and human (TCL1A) B-cell chronic lymphocytic leukemia (B-CLL) and T-cell prolymphocytic leukemia (T-PLL). Furthermore, in the murine system Tcl1a is expressed in the ovary, testis and in pre-implantation embryos, where it plays an important role in blastomere proliferation and in embryonic stem cell (ESC) proliferation and self-renewal. We have also observed that Tcl1-/-adult mice exhibit alopecia and deep ulcerations. This finding has led us to investigate the role of TCL1 in mouse skin and hair follicles. We have found that TCL1 is expressed in the proliferative structure (i.e.The secondary hair germ) and in the stem cell niche (i.e.The bulge) of the hair follicle during regeneration phase and it is constitutively expressed in the basal layer of epidermis where it is required for the correct proliferative-differentiation program of the keratinocytes (KCs). Taking advantage of the murine models we have generated, including the Tcl1-/-and the K14-TCL1 transgenic mouse, we have analysed the function of TCL1 in mouse KCs and the molecular pathways involved. We provide evidence that in the epidermal compartment TCL1 has a role in the regulation of KC proliferation, differentiation, and apoptosis. In particular, the colony-forming efficiency (CFE) and the insulin-like growth factor 1 (IGF1)-induced proliferation are dramatically impaired, while apoptosis is increased, in KCs from Tcl1-/-mice when compared to WT. Moreover, the expression of differentiation markers such as cytokeratin 6 (KRT6), filaggrin (FLG) and involucrin (IVL) are profoundly altered in mutant mice (Tcl1-/-). Importantly, by over-expressing TCL1A in basal KCs of the K14-TCL1 transgenic mouse model, we observed a significant rescue of cell proliferation, differentiation and apoptosis of the mutant phenotype. Finally, we found TCL1 to act, at least in part, via increasing phospho-ERK1/2 and decreasing phospho-P38 MAPK. Hence, our data demonstrate that regulated levels of Tcl1a are necessary for the correct proliferation and differentiation of the interfollicular KC
Evidence of sympathetic cooling of Na+ ions by a Na MOT in a hybrid trap
A hybrid ion-neutral trap provides an ideal system to study collisional
dynamics between ions and neutrals. This system provides a general cooling
method that can be applied to optically inaccessible species and can also
potentially cool internal degrees of freedom. The long range polarization
potentials () between ions and neutrals result in large
scattering cross sections at cold temperatures, making the hybrid trap a
favorable system for efficient sympathetic cooling of ions by collisions with
neutral atoms. We present experimental evidence of sympathetic cooling in a
hybrid trap of \ce{Na+} ions, which are closed shell and therefore do not have
a laser induced atomic transition, by equal mass cold Na atoms in a
magneto-optical trap (MOT).Comment: 7 figure
Role of electromagnetically induced transparency in resonant four-wave-mixing schemes.
Published versio
Magnetic field imaging with atomic Rb vapor
We demonstrate the possibility of dynamic imaging of magnetic fields using
electromagnetically induced transparency in an atomic gas. As an experimental
demonstration we employ an atomic Rb gas confined in a glass cell to image the
transverse magnetic field created by a long straight wire. In this arrangement,
which clearly reveals the essential effect, the field of view is about 2 x 2
mm^2 and the field detection uncertainty is 0.14 mG per 10 um x 10 um image
pixel.Comment: 4 pages, 3 figure
- …
