912 research outputs found
Electron acceleration in a JET disruption simulation
Runaways are suprathermal electrons having sufficiently high energy to be
continuously accelerated up to tens of MeV by a driving electric field [1].
Highly energetic runaway electron (RE) beams capable of damaging the tokamak
first wall can be observed after a plasma disruption [2]. Therefore, it is of
primary importance to fully understand their generation mechanisms in order to
design mitigation systems able to guarantee safe tokamak operations. In a
previous work, [3], a test particle tracker was introduced in the JOREK 3D
non-linear MHD code and used for studying the electron confinement during a
simulated JET-like disruption. It was found in [3] that relativistic electrons
are not completely deconfined by the stochastic magnetic field taking place
during the disruption thermal quench (TQ). This is due to the reformation of
closed magnetic surfaces at the beginning of the current quench (CQ). This
result was obtained neglecting the inductive electric field in order to avoid
the unrealistic particle acceleration which otherwise would have happened due
to the absence of collision effects. The present paper extends [3] analysing
test electron dynamics in the same simulated JET-like disruption using the
complete electric field. For doing so, a simplified collision model is
introduced in the particle tracker guiding center equations. We show that
electrons at thermal energies can become RE during or promptly after the TQ due
to a combination of three phenomena: a first REs acceleration during the TQ due
to the presence of a complex MHD-induced electric field, particle reconfinement
caused by the fast reformation of closed magnetic surfaces after the TQ and a
secondary acceleration induced by the CQ electric field
NIR-emission from Yb(III)- and Nd(III)-based complexes in the solid state sensitized by a ligand system absorbing in a broad UV and visible spectral window
In this contribution, we present the synthesis, characterization and spectroscopic investigation of the heteroleptic (R,R)-YbL1(tta) and (R,R)-NdL1(tta) complexes (with tta = 2-thenoyltrifluoroacetonate and L1 = N,N'-bis(2-(8-hydroxyquinolinate)methylidene)-1,2-(R,R or S,S)-cyclohexanediamine) in the solid state. The f-f metal-centered NIR luminescence emission of Nd(III) and Yb(III) is efficiently sensitized by both chromophoric ligands in a very broad range of wavelengths [from 250 to 600 nm, in the case of Nd(III) and from 250 to 650 nm, for Yb(III)]. A possible energy transfer mechanism is proposed: for (R,R)-NdL1(tta) complex a classical Ligand-to-Metal Energy Transfer (LMET) mechanism (antenna effect) is suggested, whilst in the case of the (R,R)-YbL1(tta) complex, the presence of a ligand-to-metal charge transfer (LMCT) state determines the sensitization of Yb(III) luminescence. We propose that this level is populated by the singlet and triplet excited states belonging to pi -> pi* and n -> pi* transitions of both ligands and it can transfer the excitation energy to F-2(5/2)
Non-linear Simulations of MHD Instabilities in Tokamaks Including Eddy Current Effects and Perspectives for the Extension to Halo Currents
The dynamics of large scale plasma instabilities can strongly be influenced
by the mutual interaction with currents flowing in conducting vessel
structures. Especially eddy currents caused by time-varying magnetic
perturbations and halo currents flowing directly from the plasma into the walls
are important. The relevance of a resistive wall model is directly evident for
Resistive Wall Modes (RWMs) or Vertical Displacement Events (VDEs). However,
also the linear and non-linear properties of most other large-scale
instabilities may be influenced significantly by the interaction with currents
in conducting structures near the plasma. The understanding of halo currents
arising during disruptions and VDEs, which are a serious concern for ITER as
they may lead to strong asymmetric forces on vessel structures, could also
benefit strongly from these non-linear modeling capabilities. Modeling the
plasma dynamics and its interaction with wall currents requires solving the
magneto-hydrodynamic (MHD) equations in realistic toroidal X-point geometry
consistently coupled with a model for the vacuum region and the resistive
conducting structures. With this in mind, the non-linear finite element MHD
code JOREK has been coupled with the resistive wall code STARWALL, which allows
to include the effects of eddy currents in 3D conducting structures in
non-linear MHD simulations. This article summarizes the capabilities of the
coupled JOREK-STARWALL system and presents benchmark results as well as first
applications to non-linear simulations of RWMs, VDEs, disruptions triggered by
massive gas injection, and Quiescent H-Mode. As an outlook, the perspectives
for extending the model to halo currents are described.Comment: Proceeding paper for Theory of Fusion Plasmas (Joint Varenna-Lausanne
International Workshop), Varenna, Italy (September 1-5, 2014); accepted for
publication in: to Journal of Physics: Conference Serie
On the efficient application of the repeated Richardson extrapolation technique to option pricing
Richardson extrapolation (RE) is a commonly used technique in financial applications for accelerating the convergence of numerical methods. Particularly in option pricing, it is possible to refine the results of several approaches by applying RE, in order to avoid the difficulties of employing slowly converging schemes. But the effectiveness of such a technique is fully achieved when its repeated version (RRE) is applied. Nevertheless, repeated RE received little attention in the financial literature; this is probably due to the necessity of paying special attention to the numerical aspects of its implementation, such as the choice of both the sequence of the stepsizes and the order of the method. In this
contribution, we consider different numerical schemes for the valuation of American options and investigate the possibility of an appropriate application of RRE. As a result, we find that, in the analyzed approaches in which the convergence is monotonic, RRE can be used as an effective tool for improving the accuracy of the approximations
On the efficient application of the repeated Richardson extrapolation technique to option pricing
Richardson extrapolation (RE) is a commonly used technique in financial applications for accelerating the convergence of numerical methods. Particularly in option pricing, it is possible to refine the results of several approaches by applying RE, in order to avoid the difficulties of employing slowly converging schemes. But the effectiveness of such a technique is fully achieved when its repeated version (RRE) is applied. Nevertheless, its application in financial literature is pretty rare. This is probably due to the necessity to pay special attention to the numerical aspects of its implementation, such as the choice of both the sequence of the stepsizes and the order of the method. In this contribution, we consider several numerical schemes for the valuation of American options and investigate the possibility of an appropriate application of RRE. As a result, we find that, in the analyzed approaches in which the convergence is monotonic, RRE can be used as an effective tool for improving significantly the accuracy
Lanthanide-Based Complexes Containing a Chiral trans-1,2-Diaminocyclohexane (DACH) Backbone: Spectroscopic Properties and Potential Applications
In this minireview, we give an overview on the use of the chiral molecule trans-1,2-diaminocyclohexane (DACH) in several fields of application. This chiral backbone is present in a variety of metal complexes which are employed in (enantioselective) catalysis, chiral discrimination, molecular recognition and supramolecular chemistry. Metal extraction and biochemical and pharmaceutical applications also use the DACH molecule. This contribution is particularly focused on the interesting chemical-physical properties discussed so far in the literature concerning lanthanide-based complexes containing chiral ligands characterized by the presence of DACH in the structure. In particular, the interconnection between luminescence (total and circularly polarized), structure and thermodynamics of Eu(III), Tb(III) and Sm(III) complexes will be discussed also in light of their use as optical or chiroptical probes for the sensing of important analytes dissolved in aprotic and protic polar solvents. Several complexes show potential interest in the solid state as phosphors for light emitting devices or for the detection of volatile organic compounds
Au(III)-Proline derivatives exhibiting selective antiproliferative activity against HepG2/SB3 apoptosis-resistant cancer cells
This paper deals with the combination of a proline-based moiety with biologically active gold centers in the oxidation states +1 and +3. In particular, six Au(i)/(iii)-proline dithiocarbamato (DTC) complexes with general formulae [AuI2(DTC)(2)] and [(AuX2)-X-III(DTC)] (X = Cl, Br) are reported here. After the synthesis of the ligand and the complexes, all derivatives were characterized via several techniques and tested for their stability in DMSO/water media. This study was focused on the demonstration of a peculiar behavior of Au(iii)-DTC species in solution. Finally, the complexes were screened for their antiproliferative activity against 2 human cancer cell lines, namely HepG2 and HepG2/SB3, taken as models of hepatocellular carcinoma. The latter, chosen for its aggressiveness due to the upregulation of the anti-apoptotic protein SerpinB3, was selectively inhibited in terms of growth by some Au(iii)-DTC complexes
ResistĂȘncia anti-helmĂntica em ovinos na regiĂŁo do MĂ©dio Paranapanema, SP.
O objetivo deste trabalho foi determinar a eficĂĄcia de vĂĄrios medicamentos antiparasitĂĄrios contra nematĂłides gastrintestinais de ovinos na regiĂŁo do MĂ©dio Paranapanema, SP. Foi utilizado o teste de redução da contagem de ovos nas fezes (TRCOF) em cinco propriedades, com cinco princĂpios ativos: ivermectina, albendazol, levamisol, moxidectina e closantel, que foram comparados a um grupo controle, sem vermĂfugo. Foram feitas coproculturas para identificar o gĂȘnero/espĂ©cie dos parasitas. O TRCOF demonstrou que apenas em uma propriedade o levamisole apresentou 92% de eficĂĄcia, e, nesta mesma propriedade, o albendazole teve 87% de eficĂĄcia. Em outra propriedade, o closantel teve 87% de eficĂĄcia. Nas demais, nenhuma droga alcançou eficĂĄcia superior a 80%. O nematĂłide encontrado com maior frequĂȘncia foi Haemonchus contortus, o verme mais prevalente e patogĂȘnico para os ovinos. Conclui-se que na regiĂŁo do MĂ©dio Paranapanema ocorre resistĂȘncia anti-helmĂntica mĂșltipla do H. contortus
- âŠ