8,126 research outputs found

    The ms 6.9, 1980 irpinia earthquake from the basement to the surface: a review of tectonic geomorphology and geophysical constraints, and new data on postseismic deformation

    Get PDF
    The MS 6.9, 1980 Irpinia earthquake occurred in the southern Apennines, a fold and thrust belt that has been undergoing post-orogenic extension since ca. 400 kyr. The strongly anisotropic structure of fold and thrust belts like the Apennines, including late-orogenic low-angle normal faults and inherited Mesozoic extensional features besides gently dipping thrusts, result in a complex, overall layered architecture of the orogenic edifice. Effective decoupling between deep and shallow structural levels of this mountain belt is related to the strong rheological contrast produced by a fluid-saturated, shale-dominated mélange zone interposed between buried autochthonous carbonates—continuous with those exposed in the foreland to the east—and the allochthonous units. The presence of fluid reservoirs below the mélange zone is shown by a high VP /VS ratio—which is a proxy for densely fractured fluid-saturated crustal volumes—recorded by seismic tomography within the buried autochthonous carbonates and the top part of the underlying basement. These crustal volumes, in which background seismicity is remarkably concentrated, are fed by fluids migrating along the major active faults. High pore fluid pressures, decreasing the yield stress, are recorded by low stress-drop values associated with the earthquakes. On the other hand, the mountain belt is characterized by substantial gas flow to the surface, recorded as both distributed soil gas emissions and vigorous gas vents. The accumulation of CO2-brine within a reservoir located at hypocentral depths beneath the Irpinia region is not only interpreted to control a multiyear cyclic behavior of microseismicity, but could also play a role in ground motions detected by space-based geodetic measurements in the postseismic period. The analysis carried out in this study of persistent scatterer interferometry synthetic aperture radar (PS-InSAR) data, covering a timespan ranging from 12 to 30 years after the 1980 mainshock, points out that ground deformation has affected the Irpinia earthquake epicentral area in the last decades. These ground motions could be a result of postseismic afterslip, which is well known to occur over years or even decades after a large mainshock such as the 23 November 1980, MS 6.9 earthquake due to cycles of CO2-brine accumulation at depth and its subsequent release by Mw ≥ 3.5 earthquakes, or most likely by a combination of both. Postseismic afterslip controls geomorphology, topography, and surface deformation in seismically active areas such as that of the present study, characterized by ~M 7 earthquakes. Yet, this process has been largely overlooked in the case of the 1980 Irpinia earthquake, and one of the main aims of this study is to fill such the substantial gap of knowledge for the epicentral area of some of the most destructive earthquakes that have ever occurred in Italy

    Calculation of three-dimensional compressible laminar and turbulent boundary flows. Three-dimensional compressible boundary layers of reacting gases over realistic configurations

    Get PDF
    A three-dimensional boundary-layer code was developed for particular application to realistic hypersonic aircraft. It is very general and can be applied to a wide variety of boundary-layer flows. Laminar, transitional, and fully turbulent flows of compressible, reacting gases are efficiently calculated by use of the code. A body-oriented orthogonal coordinate system is used for the calculation and the user has complete freedom in specifying the coordinate system within the restrictions that one coordinate must be normal to the surface and the three coordinates must be mutually orthogonal

    Ku & C Band solid state switch matrix for satellite payloads using LTCC multilayer substrate

    Get PDF
    This paper describes the design and development of Ku and C band solid state switch matrix for multimedia satellite payloads. The design, through the use of advanced packaging techniques, allows significant savings on mass and volume with respect to traditional electromechanical switches while guaranteeing a comparable reliability

    Finite Temperature Effective Potential for Gauge Models in de Sitter Space

    Get PDF
    The one-loop effective potential for gauge models in static de Sitter space at finite temperatures is computed by means of the ζ\zeta--function method. We found a simple relation which links the effective potentials of gauge and scalar fields at all temperatures. In the de Sitter invariant and zero-temperature states the potential for the scalar electrodynamics is explicitly obtained, and its properties in these two vacua are compared. In this theory the two states are shown to behave similarly in the regimes of very large and very small radii a of the background space. For the gauge symmetry broken in the flat limit (a→∞a \to \infty) there is a critical value of a for which the symmetry is restored in both quantum states. Moreover, the phase transitions which occur at large or at small a are of the first or of the second order, respectively, regardless the vacuum considered. The analytical and numerical analysis of the critical parameters of the above theory is performed. We also established a class of models for which the kind of phase transition occurring depends on the choice of the vacuum.Comment: 23 pages, LaTeX, 5 figure.ep

    PS-inSAR data analysis: Pre-seismic ground deformation in the 2009 l’aquila earthquake region

    Get PDF
    The accuracy of the millimetre-scale measurements made so far by the SAR systems, as well as the multi-temporal analysis methodologies, have provided impressive images of surface displacements in areas affected by strong earthquakes, and contributed to constrain the geometric and kinematic features of earthquake generating faults. The multi-temporal analysis of InSAR data is also being acknowledged as promising for the search of earthquake precursors. We have applied the multi-temporal PS-InSAR technique to the detection of pre- to post-seismic ground displacements in the region struck by the normal faulting 2009 L’Aquila earthquake. We have used ERS and ENVISAT PS-data sets from both ascending and descending orbits, covering a 20-year long time span. On the yearly-scale, we have identified a pre-seismic displacement pattern, which consists of opposite vertical motions that have affected the blocks in the hanging wall and footwall of the structure that is recognised as the surface trace of the earthquake-generating fault. In particular, we have highlighted a pre-seismic uplift for 4-5 years followed by subsidence (starting 6-8 months prior to the earthquake) of the hanging wall block, coeval to opposite vertical motions of the footwall block. We suggest that such a displacement pattern may represent an earthquake precursor signal
    • …
    corecore