6,999 research outputs found

    Towards the Modeling of Neuronal Firing by Gaussian Processes

    Get PDF
    This paper focuses on the outline of some computational methods for the approximate solution of the integral equations for the neuronal firing probability density and an algorithm for the generation of sample-paths in order to construct histograms estimating the firing densities. Our results originate from the study of non-Markov stationary Gaussian neuronal models with the aim to determine the neuron's firing probability density function. A parallel algorithm has been implemented in order to simulate large numbers of sample paths of Gaussian processes characterized by damped oscillatory covariances in the presence of time dependent boundaries. The analysis based on the simulation procedure provides an alternative research tool when closed-form results or analytic evaluation of the neuronal firing densities are not available.Comment: 10 pages, 3 figures, to be published in Scientiae Mathematicae Japonica

    Rare decays at B-factories

    Get PDF
    We report the latest results from BABAR and Belle on leptonic decays of B mesons and B → K(∗)νν

    Role of the flat-designed surface in improving the cyclic fatigue resistance of endodontic NiTi rotary instruments

    Get PDF
    The aim of this study was to investigate the role of the flat-designed surface in improving the resistance to cyclic fatigue by comparing heat-treated F-One (Fanta Dental, Shanghai, China) nickel-titanium (NiTi) rotary instruments and similar prototypes, differing only by the absence of the flat side. The null hypothesis was that there were no differences between the two tested instruments in terms of cyclic fatigue lifespan. A total of 40 new NiTi instruments (20 F-One and 20 prototypes) were tested in the present study. The instruments were rotated with the same speed (500 rpm) and torque (2 N) using an endodontic motor (Elements Motor, Kerr, Orange, CA, USA) in the same stainless steel, artificial canal (90° angle of curvature and 5 mm radius). A Wilcoxon-Mann-Whitney test was performed to assess the differences in terms of time to fracture and the length of the fractured segment between the flat- and non-flat-sided instruments. Significance was set at p = 0.05. The differences in terms of time to fracture between non-flat and flat were statistically significant (p < 0.001). In addition, the differences in terms of fractured segment length were statistically significant (p = 0.034). The results of this study highlight the importance of flat-sided design in increasing the cyclic fatigue lifespan of NiTi rotary instruments
    • …
    corecore