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Abstract. This paper focuses on the outline of some computational methods for

the approximate solution of the integral equations for the neuronal �ring probabil-

ity density and an algorithm for the generation of sample-paths in order to construct

histograms estimating the �ring densities. Our results originate from the study of

non-Markov stationary Gaussian neuronal models with the aim to determine the neu-

ron's �ring probability density function. A parallel algorithm has been implemented

in order to simulate large numbers of sample paths of Gaussian processes character-

ized by damped oscillatory covariances in the presence of time dependent boundaries.

The analysis based on the simulation procedure provides an alternative research tool

when closed-form results or analytic evaluation of the neuronal �ring densities are not

available.

1 Introduction

This contribution deals with the implementation of procedures and methods, worked out

in our group during the last few years, in order to provide algorithmic solutions to the

problem of determining the �rst passage time (FPT) probability density function (pdf)

and its relevant statistics for continuous state-space and continuous parameter Gaussian

processes describing the stochastic modeling of a single neuron's activity.

In most modeling approaches, it is customary to assume that a neuron is subject to

input pulses occurring randomly in time, (see, for instance, [13] and references therein). As

a consequence of the received stimulations, it reacts by producing a response that consists

of a spike train. The reproduction of the statistical features of such spike trains has been

the goal of many researches who have focused the attention on the analysis of the interspike

intervals. Indeed, the importance of the interspike intervals is due to the generally accepted

hypothesis that the information transferred within the nervous system is usually encoded

by the timing of occurrence of neuronal spikes.

To describe the dynamics of the neuronal �ring we consider a stochastic process X(t)

representing the change in the neuron membrane potential between two consecutive spikes

(cf., for instance, [9]). In this context, the threshold voltage is viewed as a deterministic

function S(t) and the instant when the membrane potential crosses S(t) as a FPT random

variable.

The modeling of a single neuron's activity by means of a stochastic process has been the

object of numerous investigations during the last four decades. A milestone contribution

in this direction is the much celebrated paper by Gerstein and Mandelbrot [7] in which a

random walk and its continuous di�usion limit (the Wiener process) was proposed with the

aim of describing a possible, highly schematized, spike generation mechanism. However,

despite the excellent �tting of a variety of data, this model has been the target of severe

criticism on the base of its extreme idealization in contrast with some electrophysiological
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evidence: for example, this model does not take into account the spontaneous exponential

decay of the neuron membrane potential. An improved model is the so called Ornstein-

Uhlenbeck (OU) model, that embodies the presence of such exponential decay. However,

the OU model does not allow to obtain any closed form expression for the �ring pdf, except

for some very particular cases of no interest within the neuronal modeling context. Rather

cumbersome computations are thus required to obtain evaluations of the statistics of the

�ring time. Successively, alternative neuronal models have been proposed, that include

more physiologically features. The literature on this subject is too vast to be recalled here.

We limit ourselves to mentioning that a review of most signi�cant neuronal models can be

found in [10], [13] and in the references therein. In particular, in [10] it is presented an

outline of appropriate mathematical techniques by which to approach the FPT problem in

the neuronal context.

We shall now formally de�ne the �ring pdf for a model based on a stochastic process

X(t) with continuous sample paths. First, assume P [X(t0) = x0] = 1, with x0 < S(t0); i.e.

we view the sample paths of X(t) as originating at a preassigned state x0 at initial time t0.

Then,

Tx0 = inf
t�t0

�
t : X(t) > S(t)

	
; x0 < S(t0)

is the FPT of X(t) through S(t), and

g[S(t); tjx0; t0] =
@

@t
P (Tx0 < t)

is its pdf.

Henceforth, the FPT pdf g[S(t); tjx0; t0] will be identi�ed with the �ring pdf of a neuron

whose membrane potential is modeled by X(t) and whose �ring threshold is S(t).

Throughout this paper, we shall focus our attention on neuronal models rooted on

di�usion and Gaussian processes, partially motivated by the generally accepted hypothesis

that in numerous instances the neuronal �ring is caused by the superposition of a very

large number of synaptic input pulses which is suggestive of the generation of Gaussian

distributions by virtue of some sort of central limit theorems.

It must be explicitly pointed out that models based on di�usion processes are character-

ized by the \lack of memory"as a consequence of the underlying Markov property. However,

in the realistic presence of correlated input stimulations, the Markov assumption breaks

down and one faces the problem of considering more general stochastic models, for which

the literature on FPT problem appears scarce and fragmentary. Simulation procedures

then provide possible alternative investigation tools especially if they can be implemented

on parallel computers, (see [3]). The goal of a typical simulation procedure is to sample N

values of the FPT by a suitable construction of N time-discrete sample paths of the process

and then to record the instants when such sample paths �rst cross the boundary. In such

a way, one is led to obtain estimates of the �ring pdf and of its statistics, that may be

implemented for data �tting purposes.

The aim of this paper is to outline numerical and theoretical methods to characterize the

FPT pdf for Gaussian processes. Attention will be focused on Markov models in Section 2,

and on non-Markovmodels in Section 3. Finally, Section 4 will be devoted to the description

of some computational results.

2 Gauss-Markov processes

We start briey reviewing some essential properties of Gauss-Markov processes. Let fX(t); t 2
Ig, where I is a continuous parameter set, be a real continuous Gauss-Markov process with

the following properties (cf. [8]):
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(i) m(t) := E[X(t)] is continuous in I;

(ii) the covariance c(s; t) := E
�
[X(s) �m(s)] [X(t) �m(t)]

	
is continuous in I � I;

(iii) X(t) is non-singular, except possibly at the end points of I where it could be equal to

m(t) with probability one.

A Gaussian process is Markov if and only if its covariance satis�es

c(s; u) =
c(s; t) c(t; u)

c(t; t)
8s; t; u 2 I; s � t � u:(1)

It is well known [8], that well-behaved solutions of (1) are of the form

c(s; t) = h1(s)h2(t); s � t;(2)

where

r(t) :=
h1(t)

h2(t)
(3)

is a monotonically increasing function by virtue of the Cauchy-Schwarz inequality, and

h1(t)h2(t) > 0 because of the assumed nonsingularity of the process on I. The conditional

pdf f(x; tjx0; t0) of X(t) is a normal density characterized respectively by conditional mean

and variance

M(tjt0) = m(t) +
h2(t)

h2(t0)
[x0 �m(t0)]

V (tjt0) = h2(t)

�
h1(t) �

h2(t)

h2(t0)
h1(t0)

�
;

with t; t0 2 I; t0 < t. It satis�es the Fokker-Planck equation and the associated initial

condition

@f(x; tjy; � )

@t
= �

@

@x
[A1(x; t) f(x; tjy; � )] +

1

2

@2

@x2
[A2(t) f(x; tjy; � )];

lim
�"t

f(x; tjy; � ) = Æ(x � y);

with A1(x; t) and A2(t) given by

A1(x; t) = m0(t) + [x�m(t)]
h02(t)

h2(t)
; A2(t) = h22(t) r

0(t);

the prime denoting derivative with respect to the argument.

The class of the Gauss-Markov processes fX(t); t 2 [0;+1)g, such that f(x; tjy; � ) �
f(x; t � � jy); is characterized by means and covariances of the following two forms:

m(t) = �1t+ c; c(s; t) = �2s + c1
(0 � s � t < +1; �1; c 2 R; c1 � 0; � 6= 0)

or

m(t) = �
�1

�2
+ c e�2t; c(s; t) = c1 e

�2t

�
c2 e

�2s �
�2

2c1�2
e��2s

�
�
0�s� t <+1; �1; c; c2 2 R; � 6= 0; c1 6= 0; �2 6= 0; c1c2 �

�2

2�2
� 0

�
.



500 E. DI NARDO, A.G. NOBILE, E. PIROZZI AND L.M. RICCIARDI

The �rst type includes the Wiener process, used in [7] to describe the neuronal �ring, while

the second type includes the Ornstein{Uhlenbeck process that has often been invoked as a

model for neuronal activity (see, for instance, [13]).

Any Gaussian process with covariance as in (2) can be represented in terms of the

standard Wiener process fW (t); t � 0g as

X(t) =m(t) + h2(t)W
�
r(t)

�
;(4)

and is therefore Markov. This last equation suggests the way to construct the FPT pdf of a

Gauss-Markov process X(t) in terms of the FPT pdf of the standard Wiener processW (t):

As an example, from (4) for the conditioned FPT pdf one has:

g[S(t); tjx0; t0] =
dr(t)

dt
gW

�
S�[r(t)]; r(t)jx�0 ; r(t0)

	
;(5)

where r(t) is de�ned in (3) and gW [S�(#); #jx�0 ; #0] is the FPT pdf ofW (#) from x�0 at time

#0 to the continuous boundary S�(#), with

x�0 =
x0 �m[r�1(#0)]

h2[r�1(#0)]
; S�(#) =

S[r�1(#)] �m[r�1(#)]

h2[r�1(#)]
:

Results on the FPT pdf for the standard Wiener process can thus in principle be used

via (5) to obtain the FPT pdf of any continuous Gauss-Markov process. For instance, if

S�(#) is linear in #, gW [S�(#); #jx�0 ; #0] is known and g[S(t); tjx0; t0] can be obtained via

(5). Instead, if gW [S�(#); #jx�0 ; #0] is not known, a numerical algorithm, or a simulation

procedure, should be used for the standard Wiener process and, after that, g[S(t); tjx0; t0]
can be obtained via the indicated transformation.

The above procedure often exhibits the serious drawback of ensuing unacceptable time

dilations (see [4]). For instance, exponentially large times are involved when transforming

the Ornstein-Uhlenbeck process to the Wiener process, which makes such a method hardly

viable. Hence, it is desirable to dispose of a direct and eÆcient computational method to

obtain evaluation of the �ring pdf. Along such a direction, in [4] it has been proved that

the conditioned FPT density of a Gauss-Markov process can be obtained by solving the

non-singular Volterra second kind integral equation

g[S(t); tjx0; t0]=�2	[S(t); tjx0; t0] + 2

Z
t

t0

g[S(� ); � jx0; t0] 	[S(t); tjS(� ); � ] d��
x0 < S(t0)

�
(6)

with S(t);m(t); h1(t); h2(t) 2 C1(I) and

	[S(t); t j y; � ] =

�
S0(t) �m0(t)

2
�
S(t)�m(t)

2

h01(t)h2(� )� h02(t)h1(� )

h1(t)h2(� )� h2(t)h1(� )

�
y �m(� )

2

h02(t)h1(t) � h2(t)h
0
1(t)

h1(t)h2(� )� h2(t)h1(� )

�
f [S(t); t j y; � ](7)

where f [x; tjy; � ] is the transition pdf of X(t): Closed form solutions of (6) are available in

[4] for di�erent families of boundaries.

By making use of this result, in [4] an eÆcient numerical procedure based on a repeated

Simpson's rule has been proposed to evaluate FPT densities of Gauss-Markov processes,

that can be implemented to obtain reliable evaluations of �ring densities for neuronal models

based on Gauss-Markov processes.
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3 Gauss non-Markov processes

The methods proposed in the previous Section rest on the strong Markov assumption on the

stochastic process modeling the neuron's membrane potential, which grants the possibility of

making use of the mentioned analytic and computational methods for FPT pdf evaluations.

This is not the case when the stochastic process used to model the neuron's �ring mechanism

is non-Markov. Here we shall focus our attention on Gauss non-Markov processes. However,

thus doing we face the lack of e�ective analytical methods for obtaining manageable closed-

form expressions for the FPT pdf, although some preliminary analytical results have been

obtained by Ricciardi and Sato in [11] for a class of stationary Gaussian processes.

Indeed, if X(t) is one-dimensional non-singular stationary Gaussian process mean square

di�erentiable, a series expansion for the FPT pdf was derived (see, [12]). In the following,

for convenience, we shall take t0 = 0 as initial time and, without loss of generality, assume

that E[X(t)] = 0 and P [X(t0) = x0] = 1, with x0 an arbitrarily speci�ed initial state.

Furthermore, the covariance function E[X(t)X(� )] := (t � � ) will be assumed to be such

that (0) = 1; _(0) = 0 and �(0) < 0 (this last assumptions being equivalent to the mean

square di�erentiable property). The FPT pdf of X(t) through S(t) is then given by the

following expression

g[S(t); tjx0] =W1(tjx0) +

1X
i=1

(�1)i
Z

t

0

dt1

Z
t

t1

dt2 � � �

Z
t

ti�1

dtiWi+1(t1; : : : ; ti; tjx0);(8)

with

Wn(t1; : : : ; tnjx0)

=

Z 1

_S(t1)

dz1 � � �

Z 1

_S(tn)

dzn

nY
i=1

[zi � _S(ti)] p2n[S(t1); : : : ; S(tn); z1; : : : ; znjx0];

where p2n(x1; : : : ; xn; z1;: : : ; znjx0) is the joint pdf of fX(t1); : : :;X(tn); Z(t1) = _X(t1);

: : : ; Z(tn) = _X(tn)g conditional upon X(0) = x0. Due to the great complexity of the

involved multiple integrals, expression (8) does not appear to be manageable for practical

uses, even though it has recently been shown that it allows to obtain some interesting

asymptotic results [5]. Since (8) is a Leibnitz series for each �xed t > 0; estimates of the

FPT pdf can in principle be obtained since its partial sum of order n provides a lower or

an upper bound to g depending on whether n is even or odd. However, also the evaluation

of such partial sums is extremely cumbersome.

In conclusion, at the present time for this class of Gaussian processes, no e�ective

analytical methods, nor viable numerical algorithms are available to evaluate the FPT

pdf. A simulation procedure seems to be the only residual way of approach.

To this aim, we have restored and updated an algorithm due to Franklin [6] in order to

construct sample paths of a stationary Gaussian process with spectral density of a rational

type and deterministic starting point. The idea is the following. Let us consider the linear

�lter

X(t) =

Z 1

0

h(s)W (t � s) ds(9)

where h(t) is the impulse response function and W (t) is the input signal. By Fourier

transformation, (9) yields

�X(!) = jH(!)j2 �W (!)(10)
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Figure 1: Plot of the boundary S(t) given in (13) for � = 0:5 and d = 0:25; 0:50 (bottom to top).

where �W (!) and �X(!) are the spectral densities of input W (t) and output X(t), respec-

tively, and where H(!) denotes the Fourier transform of h(t): Equation (10) is suggestive

of a method to construct a Gaussian process X(t) having a preassigned spectral density

�X(!) � �(!). It is indeed suÆcient to consider a white noise �(t); having spectral density

�W (!) � 1; as the input signal and then select h(t) in such a way that jH(!)j2 = �(!). If

the spectral density of X(t) is of rational type, namely if

�(!) :=

Z 1

�1

(t) e�i ! t dt =

����P (i !)Q(i !)

����
2

(11)

where P and Q are polynomials with deg(P ) < deg(Q); setting H(!) = P (i !)=Q(i !), from

(10) it follows

X(t) =
P (D)

Q(D)
�(t)

where D = d=dt: To calculate the output signal X(t) it is thus necessary to solve �rst

the di�erential equation Q(D)�(t) = �(t) to obtain the stationary solution �(t), and then

evaluate X(t) = P (D)�(t): The simulation procedure is designed to construct sample paths

of the process X(t) at the instants t = 0;�t; 2�t; : : : where �t is a positive constant time

increment. The underlying idea can be applied to any Gaussian process having spectral

densities of a rational type and, since the sample paths of the simulated process are gen-

erated independently of one another, this simulation procedure is particularly suited for

implementation on supercomputers.

Extensive computations have been performed on parallel computers to explore the dif-

ferent shapes of the FPT pdf as induced by the oscillatory behaviors of covariances and

thresholds (cf., for instance, [1] and [2]).

4 Numerical comparisons

The aim of this Section is to compare the behavior of the FPT pdf's among Gauss-Markov
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Figure 2: Plots refer to FPT pdf g(t) through the boundary (13) with � = 0:5 and d = 0:25 for a

zero-mean Gaussian process characterized by correlation function (12). In Figure 2(a) g(t) given

by (14) has been plotted. The estimated FPT pdf ~g(t) with � = 10�10 is shown in Figure 2(b),

with � = 0:25 in Figure 2(c) and with � = 0:5 in Figure 2(d).

processes and Gaussian non-Markov processes, in order to analyze how the lack of memory

a�ects the shape of the density, also with reference to the speci�ed type of correlation

function. For simplicity, set x0 = 0 and P [X(0) = 0] = 1; so that in the following we shall

consider the FPT pdf g(t) := g[S(t); tj0; 0].

To be speci�c, we consider a stationary Gaussian process X(t) with zero mean and

correlation function

(t) := e�� jtj cos(� t); � 2 IR+(12)

which is the simplest type of correlation having a concrete engineering signi�cance [14].

When the correlation function is of type (12), X(t) is not mean square di�erentiable, since

_(0) 6= 0. Thus the series expansion (8) does not hold. However, speci�c assumptions on

the parameter � help us characterize the shape of the FPT pdf.

We start assuming � = 0; so that the correlation function (12) can be factorized as

(t) = e�� � e�� (t��) � 2 R+; 0 < � < t:

Hence, choosing h1(t) = e�t and h2(t) = e��t in (2), X(t) becomes Gauss-Markov. There-

fore, for any boundary S(t); the FPT pdf g(t) can be numerically evaluated by solving the
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Figure 3: Same as in Figura 2 with d = 0:5.

integral equation (6). In the following, we consider boundaries of the form

S(t) = d e�� t

(
1�

e2 � t � 1

2 d2
ln

"
1

4
+

1

4

s
1 + 8 exp

�
�

4 d2

e2 � t � 1

� #)
;(13)

with d > 0. It is evident that limt!0 S(t) = d and that S(t) tends to 0 as t increases.

Furthermore, as d decreases, the boundary becomes atter. In Figure 1, the boundary S(t)

given in (13) is plotted for � = 0:5 and for two choices of the parameter d, i.e. d = 0:25

and d = 0:5.

As proved in [4] for boundaries of the form (13), the FPT pdf g(t) of a Gauss-Markov

process admits the following closed form:

g(t) =
4 d� e� t

e2 � t � 1

s
1 + 8 exp

�
�

4d2

e2 � t � 1

�

1 +

s
1 + 8 exp

�
�

4d2

e2 � t � 1

� f [S(t); tj0; 0];(14)

where f [S(t); tj0; 0] is the transition pdf of the Gauss-Markov process X(t):

For a zero-mean Gauss-Markov process characterized by the correlation function (12)

with � = 0:5 and � = 0, the FPT pdf g(t) given by (14) through the boundary (13) is

plotted in Figure 2(a) for d = 0:25 and in Figure 3(a) for d = 0:5. Note that as d increases

the mode increase, whereas the corresponding ordinate decrease.
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Setting � 6= 0 in (12), the Gaussian process X(t) is no longer Markov and its spectral

density is given by

�(!) =
2� (!2 + �2 + �2)

!4 + 2!2 (�2 � �2) + (�2 + �2)2
;(15)

thus being of a rational type. Since in (15) the degree of the numerator is less than the

degree of the denominator, it is possible to apply the simulation algorithm described in

Section 3 in order to estimate the FPT pdf ~g(t) of the process.

The simulation procedure has been implemented by a parallel FORTRAN 90 code on a

128-processor IBM SP4 supercomputer, based on MPI language for parallel processing. The

number of simulated sample paths has been set equal to 107. The estimated FPT pdf ~g(t)

through the boundary (13) with � = 0:5 and d = 0:25 are plotted in Figures 2(b)�2(d) for
Gaussian processes with correlation function (12) having � = 10�10; 0:25; 0:5, respectively.

For the same processes, Figures 3(b)�3(d) show the estimated FPT pdf ~g(t) through the

boundary (13) with � = 0:5 and d = 0:5. Note that as � increases, the shape of the FPT

pdf ~g(t) becomes atter and the related mode increases. Furthermore, as Figures 2(a)-2(b)

and Figures 3(a)-3(b) show, ~g(t) is very similar to g(t) for small values of �.
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