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Introduction
Abstract: A new algorithm for computing joint moments of complex non-central Wishart 
distributions W is provided, relied on a symbolic method which is particularly suited to be 
implemented for multivariate statistical distributions. The joint moments we compute have the form
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with  i = i1, i2, ..., im  a multi-index of non-negative integers and H1, H2,..., Hm complex matrices. 

Since the non-central Wishart random matrix results to be the convolution of two different random 
matrices W = WcCA, one linked to the central distribution and the other involving formal variables, 
the main idea is to apply a suitable binomial expansion, by using multisets subdivisions, and then 
insert the moments of these two different random matrices computed in a separate procedure.  Again 
multiset subdivisions are employed to compute also these moments. In particular, the moments of the
associated central Wishart distribution  are constructed by using a combinatorial device, the necklace,
which takes advantage of the cyclic property of the trace. In the literature, the existing algorithms to 
compute joint moments (1) make use of multivariable  derivative of the moment generating function 
associated to the complex non-central Wishart distribution, which has the following quite 
complicated expression:
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with I identity matrix, S the covariance matrix and W the non-centrality matrix.

Application Areas/Subject: Combinatorics & algebraic methods
Keywords: Convolution, multiset subdivision, necklace, joint moment, trace
See Also:  Background on multiset subdivisions and multivariate Faà di Bruno's formula, see [2,3].

Initialization

restart

with combinat, partition, multinomial, permute ;
partition, multinomial, permute

Multiset subdivisions 
The function makeTab has been extensively discussed in [2]: here we just mention that the procedure
makeTab performs multiset subdivisions. Informally, a subdivision is a partition of a multiset. See 
the subsequent examples . 

The list of all partitions of a set with 3 blocks is: 
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Setting  a
1

=a, a
2

=a, a
3

= b   we obtain:

 a
2
 b , a

2
, b , a, a, b , a, a b , a, a b

Compacting the previous output we obtain:

 a b, a , 2 , a, a, b , 1 , a
2
 b , 1 , a

2
, b , 1

http://www.maplesoft.com/applications/view.aspx?SID=33039

The Maple routines and examples

 The Maple routines



> > nRepdproc u mul x2!, x = convert u, multiset end proc:

URvdproc u, v
local U, ou, i, ptr, vI;
oud NULL; U := ;  vId indets v ;
for ptr from nops u by K1 to 2 do

if has uptr, v  then break end if

      end do; 
      for i from ptr to nops u do
            if not ui = ou or has ui, vI then

               oud ui;

               Ud op U , op u1 ..iK1 , ui$v, op uiC1 ..K1

            end if
       end do;

op U , op u , v
end proc:

URV :=proc
local U, V, i;
U := args1, 1 ;  Vd args2, 1;

for i to nops V  do Ud seq URv u, Vi , u = U  end do;

seq x, args1, 2$args2, 2 , x = U

end proc:
 
URmV :=proc

local U, i;
if nargs = 1 then args else

U := URV args1, args2 ;

for i from 3 to nargs do
U := seq URV u, argsi , u = U

end do;

seq x1,
x2

nRep x1
, x = U

end if
end proc:
 
comb :=proc V, ptr, Y
      if ptr = nops V C1 then return Y end if;
      seq comb V, ptrC1, op Y , L , L = Vptr

 end proc: 
 
makeTab :=proc

local U;

U := seq `if` args i = 0, NULL, seq seq ai

z
, z = y , multinomial argsi,

seq r, r = y , y = partition argsi , i = 1 ..nargs  ;
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if nops U = 1 then seq x1,
x2

nRep x1
, x = op U

                               else seq URmV op x , x = comb U, 1, end if
 end proc: 

Examples
In (3.1.2.1) the multiset a

1
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1
 is considered with a

1
 having multiplicity 2.  

The subdivisions are:
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makeTab 2
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In (3.1.2.2) the multiset a1, a2  is considered with a1 having multiplicity 1 and a2 having 

multiplicity 1.  
The subdivisions are:
a

1
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2
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1
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a1, a2 , denoted in the output with a1 a2 , 1

makeTab 1, 1

a1 a2 , 1 , a1, a2 , 1
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MFB Function
The procedure MFB computes the moments of the complex central Wishart distribution Wc and those
of the matrix A whose entries are suitable formal variables. In [1], these moments correspond to 
formulae (4.9) and (4.10) respectively. Here we just mention that in order to compute the i-th 
coefficient of the composition of two multivariable formal power series, the function MFB does not 
compute nested partial derivatives but makes use of the procedure makeTab.  

See http://www.maplesoft.com/applications/view.aspx?SID=101396 for details.

The Code
MFB :=proc

option remember;
local n, vIndets, E;
n := add argsi, i = 1 ..nargs ;

if n = 0 then return 1 end if;
vIndets := seq a

i
, i = 1 ..nargs ;

E := add fnops y
1
$y2$mul gseq degree x, vIndets

i
, i = 1 .. nops vIndets , x = y1 , y

= makeTab args

end proc:

Examples

In (4.2.1) the coefficient of order 2 of  f g x  that is 
dn

dxn
 f g x  is computed

MFB 2 ;

f2 g1
2Cf1 g2

In (4.2.2) the coefficient of order 2 of  f g x1, x2  that is 
v2

vx1 vx2
 f g x1, x2  is computed

MFB 1, 1 ;
f1 g1, 1Cf2 g1, 0 g0, 1

In (4.2.3) the coefficient of order 2 of  

f g x1, x2, x3  that is 
v3

vx1 vx2 vx3
 f g x1, x2, x3  is computed

MFB 1, 1, 1
f1 g1, 1, 1C f2 g1, 1, 0 g0, 0, 1C f2 g1, 0, 1 g0, 1, 0C f2 g1, 0, 0 g0, 1, 1C f3 g1, 0, 0 g0, 1, 0 g0, 0, 1
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Algorithm for computing joint moments of complex non-
central Wishart distributions
In this section we introduce the Maple algorithm to perform the symbolic computation of joint 
moments (1).
The computation is split in more than one procedure, which are explained in details in the following

The mkT function
The function mkT has been extensively discussed in [3]: here we just mention that the procedure 
mkT gives the list of all subvectors having the same lenght of an assigned vector V, given in 
input, and such that their summation returns the vector V.

http://www.maplesoft.com/applications/view.aspx?SID=33039 for details.

The Code

mkT d proc V, n
    local vE, L, nV;
    nVd nops V ;
    vEd seq a

i
, i = 1 ..nV ;

    Ld seq  `if` nops x1 % n, x1, NULL , x = makeTab  op V  ;

    Ld seq seq seq degree y, z , z = vE , y = x , 0$nV $ nKnops x , x = L ;
    Ld seq  op permute x , x = L ;
  end:

Example

In (5.1.1) the input vector V=[1,1] is split in 2 subvectors, having the same length of V and 
whose summation returns [1,1].
The print is in orizontal mode

mkT 1, 1 , 2 ;
1, 1 , 0, 0 , 0, 0 , 1, 1 , 1, 0 , 0, 1 , 0, 1 , 1, 0

     The print is in vertical mode

for L in mkT 2, 1 , 2  do print L ; od;
1, 1 , 1, 0

1, 0 , 1, 1

2, 1 , 0, 0

0, 0 , 2, 1

2, 0 , 0, 1

0, 1 , 2, 0
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The leftShift function
Left Shift of a vector: each element of the output vector is obtained by shifting by one position to 
the left the corresponding element of the input vector, given in arg1.

The Code

leftShift d v /  op v 2 ..K1 , v 1 ;
leftShift := v/ op v2 ..K1 , v1

Example
In (5.2.2) the vector [1,2,3,4] is shifted in [2,3,4,1].

leftShift 1, 2, 3, 4
2, 3, 4, 1

The Mnecklaces function

Let us consider the multiset  

The procedure Mnecklaces gives in output all necklaces which can be constructed by permuting 
the elements of the multiset, passed as arg1. In combinatorics, a m-ary necklace of length n is an 
equivalence class of n-character strings over an alphabet of size m.  Here n is equal to  
i1C i2C...C im  given the  lexicographically smallest string, called the representative, all other 

elements of the necklace can be obtained by circular rotation of the representative. A necklace 
represents a structure with n circularly connected beads of up to m different colors.

Depending on the value assigned to arg2, the following outputs are performed:
0:  print only the cardinality of necklaces, grouping and enumerating those having the same 
cardinality;
1:  print only the cardinality of necklaces in a list;
2:  print the cardinality and the representative of  necklaces;
3:  print all element for all necklaces. The first is the representative;
4:  print only the number of necklaces.

Example: The four necklaces which can be made with 3 red beads and 3 blue beads are the 
follow:
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You can obtain the same result by using:

Mnecklaces 1, 3 , 2, 3 , 4 /4

Instead Mnecklaces 1, 3 , 2, 3 , 2   generates:
 
                       [6, [1, 1, 1, 2, 2, 2]]
                       [6, [1, 1, 2, 1, 2, 2]]
                       [6, [1, 1, 2, 2, 1, 2]]
                       [2, [1, 2, 1, 2, 1, 2]]

or using colors

Mnecklaces blue, 3 , red, 3 , 2   generates:

                [6, [red, red, red, blue, blue, blue]]
                [6, [red, red, blue, red, blue, blue]]
                [6, [red, red, blue, blue, red, blue]]
                [2, [red, blue, red, blue, red, blue]]

The Code
Mnecklaces d proc V, flag
   local i, n, u, v, L, U;
   Ld seq x1$x2, x = V ;

   nd nops L ; 
   if n = 0 then return NULL ; fi;
   Ld op permute L ;
   vd L1; ud v ; Ud ;

   while true do
       L d L minus v ;
       for i from 1 to nK1 do
           vd leftShift v ;
           if v  subset L then
              L d L minus v ;
              ud op u , v ;
           fi;
       od;
       Ud  op U , u ;
       if nops L  = 0 then break; fi;     
      vd L1; ud v ;

   od;
   # ----- Output Management ----- #
   if flag = 0 then
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      convert seq nops x , x = U , multiset ;
   elif flag = 1 then
      sort seq nops x , x = U ;
   elif flag = 2 then
      seq nops x , x1 , x = U ;

   elif flag = 3 then
       U;
   else nops seq nops x , x1 , x = U ; fi;

end:

Example

In the following, necklaces that can be made with 4 beads, labelled with 1, and 2 beads,  
labelled with 2.

Mnecklaces 1, 4 , 2, 2 , 0
3, 1 , 6, 2

      In the following, printing of different outputs for necklaces made with 6 beads of 2 different 
colors, labelled with 1 and 2 respectively.

Mnecklaces 1, 3 , 2, 3 , 0
2, 1 , 6, 3

Mnecklaces 1, 3 , 2, 3 , 1
2, 6, 6, 6

Mnecklaces 1, 3 , 2, 3 , 2
6, 1, 1, 1, 2, 2, 2 , 6, 1, 1, 2, 1, 2, 2 , 6, 1, 1, 2, 2, 1, 2 , 2, 1, 2, 1, 2, 1, 2

Mnecklaces 1, 3 , 2, 3 , 3
1, 1, 1, 2, 2, 2 , 1, 1, 2, 2, 2, 1 , 1, 2, 2, 2, 1, 1 , 2, 2, 2, 1, 1, 1 , 2, 2, 1, 1, 1, 2 ,

2, 1, 1, 1, 2, 2 , 1, 1, 2, 1, 2, 2 , 1, 2, 1, 2, 2, 1 , 2, 1, 2, 2, 1, 1 , 1, 2, 2, 1, 1,

2 , 2, 2, 1, 1, 2, 1 , 2, 1, 1, 2, 1, 2 , 1, 1, 2, 2, 1, 2 , 1, 2, 2, 1, 2, 1 , 2, 2, 1, 2,

1, 1 , 2, 1, 2, 1, 1, 2 , 1, 2, 1, 1, 2, 2 , 2, 1, 1, 2, 2, 1 , 1, 2, 1, 2, 1, 2 , 2, 1, 2,

1, 2, 1

Mnecklaces 1, 3 , 2, 3 , 4
4

A different output can be obtained by using colors: 3 red and 3 blue beads.  
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for L in Mnecklaces blue, 3 , red, 3 , 2  do print L 2 ; od;
red, red, red, blue, blue, blue

red, red, blue, red, blue, blue

red, red, blue, blue, red, blue

red, blue, red, blue, red, blue

The m2v function
The routine m2v transforms a multiset given in args1 as input in a list. A parenthesis is inserted in
between different symbols. This because, after having generated a necklace and its representative,
is necessary to group equal characters as input to the next step. 

The code
m2v d proc V
    local u, U, v, i; ud ; Ud ;
    vd V1;

    for i from 1 to nops V  do
       if Vi = v then ud op u , Vi ;

                     else vd Vi;

                           Ud op U , u ;
                           ud v ;
       fi;
    od;
    op U , u ;
end:

Example

In (5.4.2.1) the input is the multiset [2,2,1,1,1,2,1]. This list is transformed in [2, 2],[1, 1, 1],
[2],[1]

m2v 2, 2, 1, 1, 1, 2, 1
2, 2 , 1, 1, 1 , 2 , 1

Some useful sub-functions
cn function
Cn takes as input the output of m2v and associates to each block in the list a product of matrices 
having the same indexes in the block. Therefore, for grouping with cardinality more than 1, 
powers of matrices will be given.

cno function
Cno does the same of cn, but for more than one list. Different lists are linked in correspondence 
with different elements of a summation. 

conv & convo function
The procedures conv and convo make use of cn and cno with input lists produced by the 
procedure Mnecklaces. 
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The Codes
cn d V, c  / c / nops V * Tr seq  mul By, y = x  , x = m2v V

cn := V, c /
c Tr seq mul By, y = x , x = m2v V

nops V

cno d V / add  Tr W, seq mul By, y = x  , x = m2v v , v = V  

cno := V/add Tr W, seq mul By, y = x , x = m2v v , v = V

conv d M/ add  cn v2, v1 , v = Mnecklaces M, 2  

conv := M/add cn v2, v1 , v = Mnecklaces M, 2

convod M/ add  cno v , v = Mnecklaces M, 3
convo := M/add cno v , v = Mnecklaces M, 3

Examples

In (5.5.2.1) the steps are:  
1, 1, 1, 2, 2, 1, 2 , 6 / 1, 1, 1 , 2, 2 , 1 , 2 /6 Tr B1

3, B2
2, B1, B2

cn 1, 1, 1, 2, 2, 1, 2 , 6 ;
6
7

 Tr B1
3, B2

2, B1, B2

In (5.5.2.2) the steps are: 
1, 1, 1, 2, 2, 1, 2 , 1, 1, 2, 2, 2, 1, 2 / 1, 1, 1 , 2, 2 , 1 , 2 , 1, 1 , 2, 2, 2 ,

1 , 2 /Tr W, B1
3, B2

2, B1, B2 CTr W, B1
2, B2

3, B1, B2

cno 1, 1, 1, 2, 2, 1, 2 , 1, 1, 2, 2, 2, 1, 2

Tr W, B1
3, B2

2, B1, B2 CTr W, B1
2, B2

3, B1, B2

In (5.5.2.3) and (5.5.2.4) the multiset given in input is 1, 2, 3 . The produced necklaces are 
123  and 132 . Then to each necklace, the trace of products of matrices whose indexes are
123 and 132  is built. The same is done by convo, but with the non-centrality matrix  W 

inserted in first position. 

conv 1, 1 , 2, 1 , 3, 1 ;

Tr B1, B2, B3 CTr B1, B3, B2

convo 1, 1 , 2, 1 , 3, 1 ;

Tr W, B1, B2, B3 CTr W, B2, B3, B1 CTr W, B3, B1, B2 CTr W, B1, B3, B2

CTr W, B3, B2, B1 CTr W, B2, B1, B3
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If the multiset  is empty, a 0 is produced in output.

convo 1, 0 , 2, 0 , 3, 0
0

conv 1, 0 , 2, 0 , 3, 0
0

The nCWishart function
The procedure nCWishart computes moments of a complex non-central Wishart distribution, 
according to the formula (4.8) of [1]. In particular for the binomial expansion the procedure calls 
mkT. Then the procedure calls Mnecklaces to construct all necklaces related to the multiset with 
molteplicity given by the multi-index i. These necklaces are converted in traces of products of 
matrices indexed by the strings in the necklaces by conv and convo. The traces are then inserted in 
the moments of the central Wishart distribution given in formula (4.9) and of the  matrix of formal
variables in formula (4.10),  concurring in the convolution WcCA of the non-central Wishart 
distribution.

The Code
nCWishart d proc
     local sum, L, V, U, M, n, eV, len;
    sumd 0 : lend add x, x = args ; 
    MdmkT args , 2 ;
    eVd seq B i = S$H i , i = 1 ..nargs ;

    Vd seq fi = K1 i, i = 1 ..len ; 

    Ud seq fi = ni, i = 1 ..len ; 

    Vd op V , seq gop m
1

= convo seq i, m1, i , i = 1 ..nargs , m = M ;

    Ud op U , seq gop m
1

= conv seq i, m1, i , i = 1 ..nargs , m = M ;

    for L in M do 
        sumd sumC eval MFB op L1 , V $eval MFB op L2 , U : 

    od:
     eval simplify sum , eV ;
 end:

Example

In (5.6.2.1) the joint moment in (1) with i1 = 1 

nCWishart 1

KTr W, S H1 Cn Tr S H1

In (5.6.2.2) the joint moment in (1) with i1 = 1 and  i2 = 1 

nCWishart 1, 1
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KTr W, S H1, S H2 KTr W, S H2, S H1 CTr W, S H1  Tr W, S H2

Cn Tr S H1, S H2 Cn2 Tr S H1  Tr S H2 KTr W, S H1  n Tr S H2

KTr W, S H2  n Tr S H1

In (5.6.2.3) the joint moment in (1) with i1 = 1 and  i2 = 2 

nCWishart 1, 2

Kn Tr S H2  Tr W, S H1, S H2 Kn Tr S H2  Tr W, S H2, S H1

Cn Tr S H2  Tr W, S H1  Tr W, S H2 KTr W, S H2  n Tr S H1, S H2

KTr W, S H2  n2 Tr S H1  Tr S H2 C2 Tr W, S H2  Tr W, S H1, S H2

C2 Tr W, S H2  Tr W, S H2, S H1 KTr W, S H1  Tr W, S H2
2
KTr W,

S H1, S
2
 H2

2 KTr W, S
2
 H2

2, S H1 KTr W, S H2, S H1, S H2 CTr W,

S H1  Tr W, S
2
 H2

2 C2 n2 Tr S H1, S H2  Tr S H2 Cn3 Tr S H1  Tr S H2
2

Cn Tr S H1, S
2
 H2

2 C
1
2

 n2 Tr S H1  Tr S
2
 H2

2 KTr W,

S H1  n2 Tr S H2
2
K

1
2

 Tr W, S H1  n Tr S
2
 H2

2 Cn Tr S H1  Tr W, S H2
2

Kn Tr S H1  Tr W, S
2
 H2

2

Conclusions
The proposed algorithm computes joint moments (1) of a complex non-central Wishart distribution, 
by using a symbolic representation as convolution of the central Wishart distribution and of a matrix 
of formal variables. The moments either of the central Wishart distribution either of the matrix of 
formal variables are computed by using necklaces of multisets having multiplicities given by the 
vector i = i1, i2, ... , im
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