14 research outputs found

    Lentiviral hematopoietic stem cell gene therapy for X-linked severe combined immunodeficiency

    Get PDF
    -linked severe combined immunodeficiency (SCID-X1) is a profound deficiency of T, B, and natural killer (NK) cell immunity caused by mutations in IL2RG encoding the common chain (γc) of several interleukin receptors. Gamma-retroviral (γRV) gene therapy of SCID-X1 infants without conditioning restores T cell immunity without B or NK cell correction, but similar treatment fails in older SCID-X1 children. We used a lentiviral gene therapy approach to treat five SCID-X1 patients with persistent immune dysfunction despite haploidentical hematopoietic stem cell (HSC) transplant in infancy. Follow-up data from two older patients demonstrate that lentiviral vector γc transduced autologous HSC gene therapy after nonmyeloablative busulfan conditioning achieves selective expansion of gene-marked T, NK, and B cells, which is associated with sustained restoration of humoral responses to immunization and clinical improvement at 2 to 3 years after treatment. Similar gene marking levels have been achieved in three younger patients, albeit with only 6 to 9 months of follow-up. Lentiviral gene therapy with reduced-intensity conditioning appears safe and can restore humoral immune function to posthaploidentical transplant older patients with SCID-X1

    WHIM syndrome myelokathexis reproduced in the NOD/SCID mouse xenotransplant model engrafted with healthy human stem cells transduced with C-terminus–truncated CXCR4

    No full text
    WHIM(warts, hypogammaglobulinemia, recurrent bacterial infection, and myelokathexis) syndrome is a rare immunodeficiency caused in many cases by autosomal dominant C-terminal truncation mutations in the chemokine receptor CXCR4. A prominent and unexplained feature of WHIM is myelokathexis (hypercellularity with apoptosis of mature myeloid cells in bone marrow and neutropenia). We transduced healthy human CD34(+) peripheral blood–mobilized stem cells (PBSCs) with retrovirus vector encoding wild-type (wt) CXCR4 or WHIM-type mutated CXCR4 and studied these cells ex vivo in culture and after engraftment in a nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mouse xenograft model. Neither wt CXCR4 nor mutated CXCR4 transgene expression itself enhanced apoptosis of neutrophils arising in transduced PBSC cultures even with stimulation by a CXCR4 agonist, stromal cell–derived factor-1 (SDF-1 [CXCL12]). Excess wt CXCR4 expression by transduced human PBSCs enhanced marrow engraftment, but did not affect bone marrow (BM) apoptosis or the release of transduced leukocytes into PB. However, mutated CXCR4 transgene expression further enhanced BM engraftment, but was associated with a significant increase in apoptosis of transduced cells in BM and reduced release of transduced leukocytes into PB. We conclude that increased apoptosis of mature myeloid cells in WHIM is secondary to a failure of marrow release and progression to normal myeloid cell senescence, and not a direct effect of activation of mutated CXCR4

    Correction of canine X-linked severe combined immunodeficiency by in vivo retroviral gene therapy

    No full text
    X-linked severe combined immunodeficiency (XSCID) is characterized by profound immunodeficiency and early mortality, the only potential cure being hematopoietic stem cell (HSC) transplantation or gene therapy. Current clinical gene therapy protocols targeting HSCs are based upon ex vivo gene transfer, potentially limited by the adequacy of HSC harvest, transduction efficiencies of repopulating HSCs, and the potential loss of their engraftment potential during ex vivo culture. We demonstrate an important proof of principle by showing achievement of durable immune reconstitution in XSCID dogs following intravenous injection of concentrated RD114-pseudotyped retrovirus vector encoding the corrective gene, the interleukin-2 receptor γ chain (γc). In 3 of 4 dogs treated, normalization of numbers and function of T cells were observed. Two long-term–surviving animals (16 and 18 months) showed significant marking of B lymphocytes and myeloid cells, normalization of IgG levels, and protective humoral immune response to immunization. There were no adverse effects from in vivo gene therapy, and in one dog that reached sexual maturity, sparing of gonadal tissue from gene transfer was demonstrated. This is the first demonstration that in vivo gene therapy targeting HSCs can restore both cellular and humoral immunity in a large-animal model of a fatal immunodeficiency

    Lentivector cryptic splicing mediates increase in CD34+ clones expressing truncated HMGA2 in human X-linked severe combined immunodeficiency.

    No full text
    X-linked Severe Combined Immunodeficiency (SCID-X1) due to IL2RG mutations is potentially fatal in infancy where 'emergency' life-saving stem cell transplant may only achieve incomplete immune reconstitution following transplant. Salvage therapy SCID-X1 patients over 2 years old (NCT01306019) is a non-randomized, open-label, phase I/II clinical trial for administration of lentiviral-transduced autologous hematopoietic stem cells following busulfan (6 mg/kg total) conditioning. The primary and secondary objectives assess efficacy in restoring immunity and safety by vector insertion site analysis (VISA). In this ongoing study (19 patients treated), we report VISA in blood lineages from first eight treated patients with longer follow up found a > 60-fold increase in frequency of forward-orientated VIS within intron 3 of the High Mobility Group AT-hook 2 gene. All eight patients demonstrated emergence of dominant HMGA2 VIS clones in progenitor and myeloid lineages, but without disturbance of hematopoiesis. Our molecular analysis demonstrated a cryptic splice site within the chicken β-globin hypersensitivity 4 insulator element in the vector generating truncated mRNA transcripts from many transcriptionally active gene containing forward-oriented intronic vector insert. A two base-pair change at the splice site within the lentiviral vector eliminated splicing activity while retaining vector functional capability. This highlights the importance of functional analysis of lentivectors for cryptic splicing for preclinical safety assessment and a redesign of clinical vectors to improve safety

    Gene therapy improves immune function in preadolescents with X-linked severe combined immunodeficiency

    No full text
    Retroviral gene therapy can restore immunity to infants with X-linked severe combined immunodeficiency (XSCID) caused by mutations in the IL2RG gene encoding the common gamma chain (γc) of receptors for interleukins 2 (IL-2), −4, −7, −9, −15, and −21. We investigated the safety and efficacy of gene therapy as salvage treatment for older XSCID children with inadequate immune reconstitution despite prior bone marrow transplant from a parent. Subjects received retrovirus-transduced autologous peripherally mobilized CD34+ hematopoietic cells. T-cell function significantly improved in the youngest subject (age 10 years), and multilineage retroviral marking occurred in all 3 children
    corecore