22 research outputs found

    Effect of chain stiffness on the morphology of polyelectrolyte complexes. A Monte Carlo simulation study

    Get PDF
    We have employed Monte Carlo simulations and a coarse grain model in order to analyze the final structure and morphology of complexes arising from the interaction between fully-flexible polycations and polyanions with different chain stiffness. Different morphologies, like globules, toroids and rods, are obtained depending on chain stiffness. It was observed that longer chains yield more frequently toroids than rods, as compared with shorter chains. However, the size of toroids does not depend entirely on the chain length. This suggests that the final structure of the toroids is highly dependent on the intrinsic rigidity of chain rather than on the electrostatic contributions. © 2010 Elsevier Ltd.Fil: Narambuena, Claudio Fabian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; ArgentinaFil: Leiva, Ezequiel Pedro M.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; ArgentinaFil: Chavez Paez, Martin. Universidad Autónoma de San Luis Potosí; MéxicoFil: Perez, Elias. Universidad Autónoma de San Luis Potosí; Méxic

    Crecimiento de cristales en presencia de impurezas de diferente forma y tamaño

    Get PDF
    En este trabajo nosotros presentamos un nuevo modelo cinético tendiente a describir el crecimiento de cristales a partir de una solución acuosa y en presencia de impurezas. Dicho modelo es desarrollado a partir de una generalización de la aproximación propuesta por Davey y Mullin 1. El nuevo marco teórico combina (i) una expresión analítica para la velocidad de crecimiento del cristal, donde la misma disminuye linealmente al aumentar el cubrimiento (θeq) de impurezas adsorbidas, y (ii) una nueva ecuación de isoterma de adsorción (θeq como función de la concentración de impurezas CI) en la que el adsorbato puede ocupar más de un sitio de adsorción (impureza estructurada). Este formalismo permite obtener una isoterma exacta de adsorción de impurezas lineales en una dimensión, y proporciona una buena aproximación para un sistema bidimensional de múltiple ocupación de sitios, incorporando así dos factores muy importantes (tamaño y forma) que determinan las características de inhibición del crecimiento del cristal por parte de una impureza. Los datos de la teoría fueron comparados con simulaciones de Monte Carlo. Además, los resultados teóricos fueron aplicados a datos experimentales de velocidades relativas de crecimiento de cristales de KBr en presencia de impurezas (ácidos carboxílicos alifáticos) de diferentes tamaños: HCOOH, CH3COOH, C2H5COOH y C3H7COOH. Un buen acuerdo entre teoría, simulaciones y experimentos fue encontrado. El modelo teórico aquí propuesto es simple, con parámetros que tienen un significado físico preciso. Estos parámetros se pueden obtener a partir de experimentos termodinámicos y se relacionan directamente con la configuración espacial de las moléculas de impurezas en el estado adsorbido. En este sentido, es importante enfatizar la diferencia con la teoría de Kubota y Mullin 2, donde la presencia de un parámetro empírico (factor de efectividad ) es necesaria para interpretar datos análogos a los analizados aquí.Fil: López Ortiz, Juan Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; ArgentinaFil: Quiroga, Evelina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; ArgentinaFil: Narambuena, Claudio Fabian. Universidad Tecnológica Nacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Grupo Vinculado Bionanotecnología y Sistemas Complejos | Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Grupo Vinculado Bionanotecnología y Sistemas Complejos. - Universidad Tecnológica Nacional. Facultad Regional San Rafael. Grupo Vinculado Bionanotecnología y Sistemas Complejos; ArgentinaFil: Ramirez Pastor, Antonio Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; ArgentinaVIII Encuentro de Física y Química de SuperficiesSan LuisArgentinaUniversidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés ZgrablichUniversidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Departamento de MatemáticaUniversidad Nacional de San Luis. Facultad de Química, Bioquímica y Farmacia. Instituto de Investigaciones en Tecnología Químic

    Thermal hysteresis activity of antifreeze proteins: A model based on fractional statistics theory of adsorption

    Get PDF
    Antifreeze proteins (AFPs) adsorb to the surface of embryonic ice crystals to prevent their growth. The protein-ice adsorption lowers the freezing point of the solution. Then, a thermal hysteresis can be defined as the difference between the melting and freezing temperatures. This quantity is a measure of the antifreeze protein activity. In this sense, there exists evidence that the antifreeze activity enhances with increasing the area/length of the ice-binding sites. In order to interpret this thermal hysteresis behavior, we introduce a two-dimensional adsorption model based on fractional statistics theory. The analytical expressions are obtained in terms of an exclusion parameter, which depend on the structure of the protein and area of the ice-binding sites. By using the model, thermal hysteresis activity is calculated for AFPs of different size, shape and number of active sites. The theoretical results show a good qualitative agreement with reported experimental data in the literature.Fil: López Ortiz, Juan Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; ArgentinaFil: Quiroga, Evelina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; ArgentinaFil: Narambuena, Claudio Fabian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina. Universidad Tecnologica Nacional. Facultad Regional San Rafael; ArgentinaFil: Riccardo, Jose Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; ArgentinaFil: Ramirez Pastor, Antonio Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentin

    Adsorción del macropéptido de la caseína sobre un sustrato cargado: el impacto de la regulación de la carga

    Get PDF
    El macropéptido de la caseína (constituye entre 20-25 de las proteínas totales en el suero láctico obtenido durante la producción del queso. Contiene un bajo contenido de aminoácidos aromáticos, permitiendo su uso como suplemento alimentario para pacientes de la fenilcetonuria. El GMP puede ser purificado desde el suero láctico mediante el uso de técnicas cromatográficas con sustratos de quitosano. En la superficie del substrato hay una cantidad significativa de grupos cargados, causando la adsorción de la proteína sobre el sustrato, permitiendo su purificación. El GMP no presenta una estructura definida en solución, lo que permite reproducir sus propiedades fisicoquímicas mediante modelos de grano grueso. En este trabajo, se estudia la adsorción del GMP sobre un sustrato cargado. Siguiendo la metodología establecida para estudios similares en polielectrolitos débiles, se utiliza un modelo de grano grueso que incluye las interacciones electrostáticas, volumen excluido y regulación de la carga de los grupos ácido/base débiles del GMP.Fil: Blanco, Pablo M.. Karlova Univerzita; República ChecaFil: Achetoni, Micaela M.. Universidad Tecnologica Nacional. Facultad Regional San Rafael; ArgentinaFil: Baieli, María Fernanda. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Nanobiotecnología. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Nanobiotecnología; ArgentinaFil: Narambuena, Claudio Fabian. Universidad Tecnologica Nacional. Facultad Regional San Rafael; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaXXII Congreso Argentino de Fisicoquímica y Química InorgánicaLa PlataArgentinaUniversidad Nacional de la Plata. Facultad de IngenieríaAsociación Argentina de Investigación Fisicoquímic

    Non-monotonic behavior of weak-polyelectrolytes adsorption on a cationic surface: A Monte Carlo simulation study

    Get PDF
    In this work, the weak polyelectrolyte (PE) adsorption on a strong cationic surface is studied with constant pH Monte Carlo simulations using a coarse-grained model. When a large number of PE chains is added to the system, the PE adsorbed amount vs pH curve exhibits a non-monotonic behavior, with the appearance of a maximum close to the intrinsic pKa0-value of the PE titratable groups. The apparent pKa-value of the PE chains shows a non-trivial tendency depending on the pH-value and the surface coverage degree. In increasing the pH-value, the small anions that accompany the cationic surface are replaced by PE chains and small cations. For pH>pKa0+1, an evident charge reversion of surface is observed. These results are explained analyzing the interplay between the attractive and repulsion electrostatic interactions between the different components of the system (inter- and intra-charged monomers of PE chains, the strong cationic surface and small ions) and their effects on the PE chain ionization.Fil: Narambuena, Claudio Fabian. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - San Luis. Instituto de Fisica Aplicada "dr. Jorge Andres Zgrablich". Grupo Vinculado Bionanotecnologia y Sistemas Complejos | Universidad Nacional de San Luis. Facultad de Cs.fisico Matematicas y Naturales. Instituto de Fisica Aplicada "dr. Jorge Andres Zgrablich". Grupo Vinculado Bionanotecnologia y Sistemas Complejos. - Universidad Tecnologica Nacional. Facultad Reg.san Rafael. Grupo Vinculado Bionanotecnologia y Sistemas Complejos.; ArgentinaFil: Blanco, Pablo M.. Universidad de Barcelona. Facultad de Quimica. Instituto de Quimica Teorica y Computacional.; EspañaFil: Rodriguez, Adrian. Universidad Tecnológica Nacional. Facultad Reg. Neuquen; ArgentinaFil: Rodríguez, Diego E.. Universidad Tecnológica Nacional. Facultad Reg. Neuquen; ArgentinaFil: Madurga, Sergio. Universidad de Barcelona. Facultad de Quimica. Instituto de Quimica Teorica y Computacional.; EspañaFil: Garcés, José L.. Universidad de Barcelona. Facultad de Quimica. Instituto de Quimica Teorica y Computacional.; EspañaFil: Mas Pujadas, Francesc. Universidad de Barcelona. Facultad de Quimica. Instituto de Quimica Teorica y Computacional.; Españ

    On the reasons for α-lactalbumin adsorption on a charged surface: a study by Monte Carlo simulation

    No full text
    This work studies α-lactalbumin adsorption on a charged substrate using Monte Carlo simulation. The protein is represented by a coarse-grained model with enough components as to reproduce the complex behavior of α-lactalbumin on electrically-charged substrates. The simulation results in particular can reproduce protein adsorption when both the protein and the substrate are negatively charged. The energetic and entropic contributions to the free energy of the adsorption process are estimated and analyzed. The effects of the charge regulation mechanism, the localization of titratable groups in α-lactalbumin as well as the distribution of small ions around the interface are studied in detail. Both the asymmetrical distribution of the charged groups of the protein and the counterion distribution play predominant roles in α-lactalbumin adsorption on a substrate with the same sign of electrical charge.Fil: Narambuena, Claudio Fabian. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Tecnológica Nacional; Argentina. Universidad Nacional de San Luis; Argentin

    Lysozyme adsorption in pH-responsive hydrogel thin-films: the non-trivial role of acid-base equilibrium

    Get PDF
    We develop and apply a molecular theory to study the adsorption of lysozyme on weak polyacid hydrogel films. The theory explicitly accounts for the conformation of the network, the structure of the proteins, the size and shape of all the molecular species, their interactions as well as the chemical equilibrium of each titratable unit of both the protein and the polymer network. The driving forces for adsorption are the electrostatic attractions between the negatively charged network and the positively charged protein. The adsorption is a non-monotonic function of the solution pH, with a maximum in the region between pH 8 and 9 depending on the salt concentration of the solution. The non-monotonic adsorption is the result of increasing negative charge of the network with pH, while the positive charge of the protein decreases. At low pH the network is roughly electroneutral, while at sufficiently high pH the protein is negatively charged. Upon adsorption, the acid-base equilibrium of the different amino acids of the protein shifts in a nontrivial fashion that depends critically on the particular kind of residue and solution composition. Thus, the proteins regulate their charge and enhance adsorption under a wide range of conditions. In particular, adsorption is predicted above the protein isoelectric point where both the solution lysozyme and the polymer network are negatively charged. This behavior occurs because the pH in the interior of the gel is significantly lower than that in the bulk solution and it is also regulated by the adsorption of the protein in order to optimize protein-gel interactions. Under high pH conditions we predict that the protein changes its charge from negative in the solution to positive within the gel. The change occurs within a few nanometers at the interface of the hydrogel film. Our predictions show the non-trivial interplay between acid-base equilibrium, physical interactions and molecular organization under nanoconfined conditions, which leads to non-trivial adsorption behavior that is qualitatively different from what would be predicted from the state of the proteins in the bulk solution.Fil: Narambuena, Claudio Fabian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina. Northwestern University; Estados UnidosFil: Longo, Gabriel Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaFil: Szleifer, Igal. Northwestern University; Estados Unido

    Counterion condensation on polyelectrolyte chains adsorbed on charged surfaces

    No full text
    We developed a Monte Carlo systematic study into the effect of counterion condensation on the polyelectrolyte adsorption process on charged surfaces. Polyelectrolyte is modeled as a full-flexible chain whose size is characterized by the equilibrium bond length and the number of monomers per chain. The small anions and cations are explicitly modeled. The adsorption proceeds with a non-trivial counterion condensation degree on the polyelectrolyte chain. When the polyelectrolyte coverage degree on the surface is low, the chain looses most of its counterions (anions), due to their electrostatic repulsion with the negatively charged surface. This effect is more evident when the equilibrium bond length is shorter. Counterions are recondensed as coverage degree increases, and this is attributed to two main energetic reasons: first, the chains adsorbed cause shielding of anion-surface repulsive electrostatic interaction; second, the repulsive interaction between chains adsorbed on the surface is shielded by the condensed counterions on these chains. The amount of polyelectrolyte adsorbed and degree of condensation counterions reaches a plateau as a function of the number of chains added to the simulation box. At this point surface charge is overcompensated in a similar magnitude for the different chain types. However, the adsorbed chains keep most of their condensed counterions when the equilibrium bond length is shorter. Additionally, we study the size effect (number of monomer per chain) on the condensation degree on adsorbed polyelectrolyte. Condensation is highly dependent on a low chain size (low than 60 monomers approximately) since end effects are important. With a higher chain size, counterion condensation and charge reversal show a negligible correlation with chain size.Fil: Narambuena, Claudio Fabian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina. Northwestern University; Estados UnidosFil: Leiva, Ezequiel Pedro M.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; ArgentinaFil: Pérez, Elías. Instituto de Física, Universidad Autónoma de San Luis Potosí; Méxic

    Adsorption thermodynamics of two-domain antifreeze proteins: Theory and Monte Carlo simulations

    No full text
    In this paper we develop the statistical thermodynamics of two-domain antifreeze proteins adsorbed on ice. We use a coarse-grained model and a lattice network in order to represent the protein and ice, respectively. The theory is obtained by combining the exact analytical expression for the partition function of non-interacting linear k-mers adsorbed in one dimension, and its extension to higher dimensions. The total and partial adsorption isotherms, and the coverage and temperature dependence of the Helmholtz free energy and configurational entropy are given. The formalism reproduces the classical Langmuir equation, leads to the exact statistical thermodynamics of molecules adsorbed in one dimension, and provides a close approximation for two-dimensional systems. Comparisons with analytical data obtained using the modified Langmuir model (MLM) and Monte Carlo simulations in the grand canonical ensemble were performed in order to test the validity of the theoretical predictions. In the MC calculations, the different mechanisms proposed in the literature to describe the adsorption of two-domain antifreeze proteins on ice were analyzed. Indistinguishable results were obtained in all cases, which verifies the thermodynamic equivalence of these mechanisms and allows the choice of the most suitable mechanism for theoretical studies of equilibrium properties. Even though a good qualitative agreement is obtained between MLM and MC data, it is found that the new theoretical framework offers a more accurate description of the phenomenon of adsorption of two-domain antifreeze proteins.Fil: Narambuena, Claudio Fabian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; ArgentinaFil: Sanchez Varretti, Fabricio Orlando. Universidad Tecnologica Nacional. Facultad Regional San Rafael; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Ramirez Pastor, Antonio Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentin

    Adsorption of three-domain antifreeze proteins on ice: A study using LGMMAS theory and Monte Carlo simulations

    Get PDF
    In the present work, the adsorption of three-domain antifreeze proteins on ice is studied by combining a statistical thermodynamics based theory and Monte Carlo simulations. The three-domain protein is modeled by a trimer, and the ice surface is represented by a lattice of adsorption sites. The statistical theory, obtained from the exact partition function of non-interacting trimers adsorbed in one dimension and its extension to two dimensions, includes the configuration of the molecule in the adsorbed state, and allows the existence of multiple adsorption states for the protein. We called this theory "lattice-gas model of molecules with multiple adsorption states" (LGMMAS). The main thermodynamics functions (partial and total adsorption isotherms, Helmholtz free energy and configurational entropy) are obtained by solving a non-linear system of j equations, where j is the total number of possible adsorption states of the protein. The theoretical results are contrasted with Monte Carlo simulations, and a modified Langmuir model (MLM) where the arrangement of the adsorption sites in space is immaterial. The formalism introduced here provides exact results in one-dimensional lattices, and offers a very accurate description in two dimensions (2D). In addition, the scheme is capable of predicting the proportion between coverage degrees corresponding to different conformations in the same energetic state. In contrast, the MLM does not distinguish between different adsorption states, and shows severe discrepancies with the 2D simulation results. These findings indicate that the adsorbate structure and the lattice geometry play fundamental roles in determining the statistics of multistate adsorbed molecules, and consequently, must be included in the theory.Fil: López Ortiz, Juan Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; ArgentinaFil: Torres, Paola Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina. Universidad Tecnológica Nacional; ArgentinaFil: Quiroga, Evelina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; ArgentinaFil: Narambuena, Claudio Fabian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; ArgentinaFil: Ramirez Pastor, Antonio Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentin
    corecore