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We have employed Monte Carlo simulations and a coarse grain model in order to analyze the final
structure and morphology of complexes arising from the interaction between fully-flexible polycations
and polyanions with different chain stiffness. Different morphologies, like globules, toroids and rods, are
obtained depending on chain stiffness. It was observed that longer chains yield more frequently toroids
than rods, as compared with shorter chains. However, the size of toroids does not depend entirely on the
chain length. This suggests that the final structure of the toroids is highly dependent on the intrinsic
rigidity of chain rather than on the electrostatic contributions.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Polyelectrolytes (PEs) are polymer chains that, in aqueous
dissolution, acquire a certain amount of electrical charge on their
monomers. PE solutions show remarkable physicochemical prop-
erties as compared with those of the neutral polymer [1], such as
the formation of complexes in solution between oppositely charged
polyelectrolytes [2] and the adsorption of polyelectrolyte on
charged surfaces [3]. Electrostatic interactions and the release of
counterions play a key role in the properties of polyelectrolytes
[4e6]. In particular, complex formation on surfaces by alternate
adsorption with oppositely charged polyelectrolyte causes self-
assembling into multilayer films [7]. These structures have been
also been developed using biological components to design drug
delivery systems [8] and functionalized surfaces [7].

The self-assembling of PE films has been investigated through
their surface morphology by atomic force microscopy (AFM) in
Liquid-Cell [9], and a granular structure formed by PE complexes has
been identified [10]. However, PE complexes forming toroids have
alsobeenobservedduringsequential adsorptionofpolyethylenimine
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(PEI) and poly sodium 4-styrenesulfonate (PSS) on glass surfaces
[11,12]. Additionally, Stokke et al. have studied themorphology of the
semiflexible biological polyanion alginate, acetan,DNA, xanthan, and
complexedwith chitosanusing tappingmodeAFM identifying linear,
toroidal and globular morphological structures. The results have
confirmed that chain stiffness plays a decisive role in the determi-
nation of complex structures [13]. These authors have also studied
the ability of various chitosans, differing in the fractional content of
acetylated units and the degree of polymerizations to compact DNA.
Complexes made by mixing plasmid DNA with chitosans yielded
a population of toroids and rods [14]. The relative importance of
valence and charge density of the polycation chitosan on the
compactionprocess of DNA and xanthanhas been also analyzed [15].

A phenomenon closely related to complex formation is DNA
condensation by a multivalent salt, in which DNA undergoes
a dramatic transition from an extended structure to a compact
highly ordered structure [16]

Experiments have shown that morphology of complexes
depends on chain stiffness, in which flexible polymers generally
collapse to disordered globules, and stiff ones collapse to ordered
structures such as toroids or folded chains [17,18].

Hence, it is important to analyze how the physical phenomenon
of DNA complex formation by interaction with polycations is
related to DNA condensation that takes place by addition of poly-
valent ions. Over the last decades, these phenomena have attracted
the interest of biophysicists and biochemists. Biologically, the quest
to understand DNA toroid formation has been motivated by its

mailto:claudionarambuena@fcq.unc.edu.ar
www.sciencedirect.com/science/journal/00323861
http://www.elsevier.com/locate/polymer


C.F. Narambuena et al. / Polymer 51 (2010) 3293e33023294
relevance to gene packing in certain viruses, and by the potential
use of DNA toroids in artificial gene delivery (e.g., gene therapy).
DNA condensation has also attracted the attention of polymer
physicists, as the collapse of DNA molecules into well-defined
structures represents a good example of polymer phase transition.

In numerical simulations of semiflexible polyelectrolyte conden-
sation by addition of polyvalent ions [19e21], the formation of
globule, toroidal and rod structures has been observed. But also,
reported computational simulation studies where the complexation
is carried out between oppositely charged chains, we differentiate
between fully flexible [4,22e24] and semiflexible polyelectrolyte
chains [25e27]. Guskova et al. have investigated the structure and
stability of complexes formed by oppositely charged rigid-chain
macromolecules, and their response to variation of external condi-
tions usingmolecular dynamics [27]. They have found that the chains
involved in a complex may have diverse conformations such as
toroids, tennis rackets, etc.

In the present work, we will extend these results and study in
detail the chain stiffness of our model neutral and charged poly-
mers as a function of their parameters. Then, we will study the
effect of chain stiffness and size on the structure the polyelectrolyte
complexes, assessing in particular the probability of finding a given
morphological structure. We will analyze in detail the local struc-
ture of the complexes obtained.

This article is organized as follows: Sections 2 and 3 describe the
computational model and the measured quantities respectively.
Section 4.1 characterizes the conformation and stiffness of poly-
electrolyte chains depending on the different conditions of the
model. The polyelectrolyte complex is studied in Section 4.2.
Section 5 provides conclusions and remarks.

2. Computational model

We use a primitive model for monomers and small ions. The
solvent is modeled in terms of a dielectric continuum, i.e., an
implicit solvent with relative dielectric constant 3r ¼ 78. The
simulation box is a cubic one with the dimensions L � L � L.
Periodic boundary conditions are applied in the three directions.
The neutral, anionic and cationic polymers are made of Npol, Npa
and Npc chains, each with Nmpol, Nmpa and Nmpc monomers,
respectively.

The monomers are modeled as charged spheres with a diameter
d ¼ 4 nm. Two consecutive monomers in each chain are connected
by a harmonic stretching spring whose potential energy is assumed
to be ubond ¼ keq(l � l0)2, where l is the bond length and l0 ¼ 0.5 nm
is the equilibrium bond length. The spring constant has a value
keq ¼ 1000(kbT/nm2) where kb is Boltzmann’s constant, and T is the
absolute temperature. This constant is chosen to be high enough so
as prevent fluctuations of the bond length.

The intrinsic stiffness of the neutral polymer is modeled by
a bending potential energy of harmonic type ubend ¼ kbend, poly
(b � b0)2, where b is the angle defined by three consecutive mono-
mers andb0 is theequilibriumanglevalueequal top. Thevalueof the
bending constant kbend, poly is varied from 0 to 50 with units in kbT/
rad2. The equivalent for the polyanion and polycation chain is
ubend ¼ kbend, pa(b � b0)2 and ubend ¼ kbend, pc(b � b0)2 respectively.

All the small ions of the systemare considered to be rigid spheres
with a diameter of d ¼ 0.4 nm with an embedded unit (positive or
negative) charge. A PE chain hasNmpc� f counterions, where f is the
fraction of chargedmonomers in the PE (f¼ 1 in this work), yielding
a total number of Ncpc ¼ Npc � Nmpc � f counterions when all the PE
chains are the polycations and Ncpa ¼ Npa � Nmpa � f counterions
when all the PE chains are the polyanions.

The pair interactions are assumed to be electrostatic and of the
hard-sphere type according to:
u
�
r!ij
� ¼ ZiZje2

4p303rrij
; rij > d

u
�
r!ij
� ¼ N; rij � d

(1)

where Zi is the charge of the particle (monomer ion), e is
the elemental charge, 303r is the permittivity of the dielectric
continuum, r!ij is the relative position vector, rij ¼ j r!ijj is the
distance between particles i and j. The electrostatic energy of the
box is calculated with the Ewald summation method [28,29].

The equilibrium properties of the system were evaluated by
computer simulations devised according to the Metropolis Monte
Carlo (MC) algorithm [30]. The particles were initially positioned at
random within the simulation box, avoiding overlapping, since
these are represented as hard spheres, according to equation (1).
The algorithm employed allowed for single particle displacement,
as usual in liquid-state simulations [28,29]. In addition, system
equilibration is achieved by taking into account the translational
motion of the PE chain with its condensed ionic atmosphere, PE
pivot motion, and flip motion of the chains [31]. These moves are
accepted with the probability {1, exp(�DU/kbT)} where DU denotes
the change of the potential energy between the initial and the final
configurations.

The number of free ions of the system was adjusted automati-
cally by means of a Grand Canonical MC (GCMC) procedure [32]. In
this work we assume salt free conditions. When the simulation is
performed with a single type of polyelectrolyte chain, its counter-
ions are the only small ions present in the system; otherwise in the
simulation of a polyelectrolyte complex the GCMC algorithm
eliminates all neutral pairs of small ions.

The system was allowed to equilibrate for 106 MC steps for
a polyelectrolyte chain and 107 MC steps for a polyelectrolyte
complex, following the evaluation run during 106 and 107 MC steps
respectively.

3. Measured quantities

The rigidity of the polyelectrolyte chain is an important variable
influencing the final morphology of polyelectrolyte complexes,
thus, it is worth characterizing the conformation of a single chain
and complexes morphologies as a function of the parameters that
determine the chain stiffness (bending constant and electric
charge).

The degree of flexibility was quantified using two kinds of
parameters. The first one focuses on the overall flexibility of the
chain: quantities derived from the end-to-end vector. The other
one, emphasizes on the local flexibility; they are the intrinsic and
electrostatic persistent lengths obtained from the segment orien-
tational correlation function, as defined below.

The end-to-end vector R
!

e ¼ r!N � r!1 joining the two ends of
the chain was used to characterize the global configuration of the
chain. We calculated the mean square of the end-to-end vector

h R!2
e i, obtained by averaging over all conformations. The end-to-

end vector R
!

e can be rewritten as:

R
!

e ¼
XNm�1

i¼1

a!i; (2)

where a!i ¼ r!iþ1 � r!i is the segment or bond between the posi-
tions of neighboring monomers. Its mean square can be written as
follows:

D
R
!2

e

E
¼
* XNm�1

i¼1

a!i$
XNm�1

j¼1

a!j

+
¼
XNm�1

i¼1

h a!iiþ2
X
1<i<j

X
<Nm�1

�
a!i a

!
j
�
(3)
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The angle qij between the vectors ai and aj is obtained from the
equality:

a!i$ a
!

j ¼ j a!ij$
�� a!j
��cos qij (4)

When the polymer behaves as an ideal chain (negligible bending
potential and zero monomer volume), the segment directions are
not correlated and the angle qij takes, with equal probability, any
value from 0 to p so that the averaging becomes:

�
a!i$ a

!
j
� ¼ l20

�
cos qij

� ¼ 0 (5)

where l0 ¼ hj a!iji. Thus, in the case of an ideal chain, equation (3)
yields:

D
R
!2

e

E
¼ ðNm� 1Þl20 (6)

For a long polymer ðNmpoly[1Þ the mean size of an ideal chain
is given by the root-mean-square end-to-end distance Re: [33]

Re ¼ h R!ei1=2wl0 Nm1=2 (7)

In the general case Re is written as:

RewNmn (8)

where v is a scaling coefficient with a value of 1/2 for an ideal chain
and 0.6 for a neutral chain with exclusion volume interactions [34].

Another parameter that will be analyzed is the end-to-end

distance Dee defined as Dee ¼
ffiffiffiffiffiffiffi
R
!2

e

q
. After allowed system equili-

bration, the Dee was calculated from the chain conformations
obtained in the Monte Carlo simulations; the end-to-end distance
probability distribution density P(Dee) was estimated from
a histogram.

The segment orientational correlation between two links a!i and
a!j was also calculated according to:

�
cos qij

� ¼
*

a!i$ a
!

j

j a!ij$
�� a!j
��
+

(9)

If we average over all pairs i, j maintaining constant the value of
s ¼ ji� jj.

hcos qðsÞi ¼
*

a!i$ a
!

j

j a!ij$j a!jj

+
s¼ji�jj

(10)

where hcos qðsÞi represents the average of the cosine of the angle
between the chain segments separated by the length s, called
segment orientational correlation function (SOCF).

The morphology of the structures obtained in the poly-
electrolyte complex simulations was characterized by the aspher-
icity A. This parameter is useful to measure the anisotropy and
deviation from sphericity and is defined as [35]

A ¼ ðl1 � l2Þ2þðl2 � l3Þ2þðl1 � l3Þ2
2ðl1 þ l2 þ l3Þ2

(11)

where l1, l2 and l3 are the three eigenvalues of the gyration tensor
of the chain calculated by

sa;b ¼ 1
Nm

XNm
i¼1

ð r!i � r!cmÞað r!i � r!cmÞb (12)

where the subscripts a and b denote the three Cartesian compo-
nents x, y and z
The values of A range between 0 and 1. It is equal to 0 for
a perfect sphere, 0.25 for a perfect ring, and 1 for a straight line. For
an ideal chain, hAi is 0.431, as obtained from simulations [36].

The three eigenvalues l1, l2 and l3 of the gyration tensor are the
three principal radii of gyration squared Rg21, Rg

2
2 and Rg23 respec-

tively [35]. An invariant of matrix sa,b is the trace related to the
radius of gyration RG [35] by:

RG2 ¼ tr
�
sa;b
	

¼ l1 þ l2 þ l3 ¼ Rg21 þ Rg22 þ Rg23 (13)

The largest eigenvalue is defined as lmax which corresponds to
radii gyration maximum squared value Rg2max:

Rg2max ¼ lmax (14)

The radius of a toroid RToroid has been defined as the root-mean-
square of the largest of the three principal radii of gyration.

RToroid ¼
D
Rg2max

E1=2
(15)

4. Results and discussion

4.1. Conformational and persistence length of a single
polyelectrolyte chain

Polymer chains may be characterized by a degree of flexibility
and may be categorized into three main groups: flexible chains, in
which bending is limited over the length of a few links; semiflexible
chains, in which bending becomes appreciable over larger lengths;
and rigid rods, where the extension of the bending radius is
considerably greater than the chain dimension [33]. In our
computational model the chain stiffness is determined by the
bending constant and the forces caused by the presence of elec-
trostatic charges on the monomers of the polyelectrolyte.

In Fig. 1, we compare these two contributions to the chain
stiffness. The figure shows the dependence of the root-mean-
square end-to-end distance Re on the number of monomers in the
chain Nm for a neutral polymer and for a polyelectrolyte with
different values of the bending constant. It also shows the
maximum chain stretching indicated by the contour length of the
polymer chain Lchain ¼ (Nmpol � 1) � l0 for qualitative comparison.
In order to verify the accuracy of theMC algorithm, wewill consider
the case of the ideal chain. Within statistical error, the root-mean-
square end-to-end distance is found to follow the scaling relations
(equation (8)) with v ¼ 1/2. The results for a neutral polymer with
a value of kbend, poly ¼ 0, the fully flexible case, are found to follow
the well-established scaling relations (equation (8)) with v¼ 0.6, in
good agreement with the theoretical values for an athermal
excluded-volume chain [34]. For kbend, poly ¼ 1e5 the neutral chain
has a scaling coefficient v ¼ 0.6; for higher bending constant values
the scaling coefficient increases until it reaches a value of 0.9
approximately. In the polyelectrolyte case, independently of the
bending constant the scaling coefficient has a value vz 1, showing
that the root-mean-square end-to-end distance is approximately
linear with themonomer number in the chain. However, in the case
of the polyelectrolyte chain with kbend, pa ¼ 0, the value of the root-
mean-square end-to-end distance is much lower than that of the
contour length, implying that the polyelectrolyte chain is not fully
stretched.

To establish the relationship between the global conformation
of the chain and local stiffness we analyzed the end-to-end distance
probability distribution density P(Dee) for a neutral chain of 60
monomers (Nmpol ¼ 60) and a polyanion chain of 60 monomers
(Nmpa ¼ 60), depicted in Fig. 2a and b, respectively, at different
bending constants.



Fig. 1. Plot of the modulus of the end-to-end vector Re as a function of the number of
monomers in the chain for a neutral polymer (empty symbols) and for a poly-
electrolyte (filled symbols). The different values of bending constant kbend are given
inside the figure.

Fig. 2. End-to-end distribution function P(Dee) for a chain of 60 monomers at different
bending constants as obtained fromMonte Carlo simulation (symbols) and using G(dee)
of Equation (16) (solid line). (a) Neutral chain (b) Polyanion chain. The values of
bending constants are given in the upper figure.

Table 1
Intrinsic (l0p) and electrostatic (lep) persistence length values for neutral polymer and
polyanion chains at different bending constant and sizes. The values are given in nm
and correspond to fits using equations (16), (17) and (20) as indicated in the cor-
responding columns.

l0p lep

kbend (eq.
(16))

(eq.
(17))

(Nmpa ¼ 30)
(eq. (20))

(Nmpa ¼ 60)
(eq. (20))

(Nmpa ¼ 90)
(eq. (20))

(Nmpa ¼ 120)
(eq. (20))

0 0.8 0.4 10.3 25.3 43.1 59.6
1 1.3 1.4 10.5 26.2 45.1 61.5
2 2.0 2.5 10.8 26.6 46.2 64.1
4 3.8 4.8 10.8 26.9 46.4 64.0
5 4.8 6.0 10.8 27.1 44.5 65.4
10 10.0 11.5 10.6 25.6 44.7 65.0
20 20.2 23.5 9.8 24.5 41.2 58.7
30 32.4 34.8 10.5 23.2 39.7 55.4
40 43.0 46.5 10.5 21.6 39.0 56.3
50 55.6 58.0 10.4 21.2 37.9 52.0
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Fig. 2a shows the effect of the bending constant kbend, poly on P
(Dee) for a neutral polymer, where the most probable values of Dee

can be compared with the contour length for this chain size
Lchain ¼ 29.5 nm. For a value of kbend, poly ¼ 0, the fully flexible case,
the values of Dee present a symmetric distributionwith a maximum
value of P(Dee) close to 6 nm. This is much smaller than the contour
length of the chain, implying that in the simulated polymer struc-
tures, stretched conformations constitute a minor fraction, while
the major fraction corresponds to forms strongly coiled in space.
We also note that the fluctuations in the values ofDee have the same
order of magnitude as its average value, implying that under the
present conditions Dee is a strongly fluctuating property. Increasing
the chain stiffness kbend, poly ¼ 1e10 give us the semiflexible case,
where the function P(Dee) shifts to higher Dee values. Fig. 2a shows
meaningful fluctuations around the maximum value. These fluc-
tuations are drastically reduced when kbend, poly ¼ 50, where the
most probable conformation corresponds to a fully extended
structure, with a maximum value close to the contour length.

Wilhelm and Frey [37] have calculated analytically the end-to-
end distance distribution function of a semiflexible polymer
adopting a continuum wormlike chain model. They obtained the
following expression:

GðdeeÞ ¼ 2 k

4 p N

XN
n¼1

p2n2ð�1Þnþ1e�kp2n2ð1�deeÞ (16)

where dee ¼ Dee/Lchain is the end-to-end distance relative to the
chain contour length, N is a normalization constant, k ¼ l0p=Lchain,
where l0p is the intrinsic persistence length. Fig. 2a shows in full line
the G(dee) obtained by fitting equation (16) in comparison with P
(Dee) obtained from our Monte Carlo simulations. The curves fitting
process considered only one free parameter, l0p . The general
observation is that equation (16) reproduces the data qualitatively
well and is an excellent approximation for kbend, poly � 1. The values
of l0p at a given kbend, poly are weakly dependent on the chain size,
therefore, we averaged the value of l0p on the different chain sizes.
Table 1 displays the average values of l0p , where a linear relationship
between l0p and kbend, poly can be observed.
Fig. 2b shows the combined effects of bending potential and
electrostatic interaction on P(Dee) for a polyanion chain of 60
monomers. In the case of kbend, pa ¼ 0 the change of P(Dee) is rela-
tively abrupt as compared with the neutral case present in Fig. 2a. P
(Dee) is shifted to greaterDee values, but the most probable values of
Dee are still far from the chain contour length. This suggests that,
although electrostatic interactions tend to stretch the polymer
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chain, they are not strong enough to yield a rigid rod, in agreement
with Fig. 1. When kbend, pa ¼ 1, the P(Dee) function shows a similar
picture, but at a greater value of the bending constant, kbend, pa ¼ 5
or kbend, pa ¼ 10, the fluctuations are reduced considerably with
respect to the neutral polymer case. When kbend, pa ¼ 50, the P(Dee)
profiles are similar for the neutral and the charged polymer, indi-
cating that under these conditions the intrinsic stiffness dominates.
The P(Dee) profiles for the polyanion, Fig. 2b, are poorly fitted by
equation (16) (data not shown), which means that the poly-
electrolyte conformational statistics cannot be satisfactorily inter-
preted in terms of a wormlike chain model.

We used the SOCF, defined in equation (10), combined with
theoretical interpretations to estimate the intrinsic and electro-
static contributions to the persistence length.

Fig. 3 shows the SOCF for a neutral chain (a) and for a polyanion
chain (b) of 60 monomers for different values of the bending
constant. In the neutral polymer case, the SOCF shows the shape of
a simple exponential decay. This can be interpreted in the theo-
retical framework by the following expression [33]:

hcos qðsÞi ¼ exp

 
� s
l0p

!
(17)

where the preexponential factor is equal to unity, because cos q

(s ¼ 0) ¼ 1. The curves obtained from the theoretical expression
equation (17) can fit satisfactorily the SOCF for kbend, pol� 1. Volume
Fig. 3. SOCF of a neutral polymer (a) and a polyanion (b) of 60 monomers. The
different values of bending constant used are reported inside the upper graphic. The
continuous lines represent the fit with the theoretical expressions (17) and (20) for (a)
and (b) respectively.
exclusion effects become important in the limiting case of the fully
flexible chain; this effect was not taken into account in the theo-
retical derivation of equation (17) [33]. The simple exponential
decay observed suggests that there is only one relevant spatial scale
to characterize the intrinsic persistence length; this is the main
feature of the worm-chain model [33]. The l0p values obtained from
this fitting were averaged on the different chain sizes and are
reported in Table 1. These values are in excellent agreement with
those calculated with equation (16).

The SOCF for a polyanion chain, Fig. 3b, is qualitatively different
from the simple exponential decay found for the neutral polymer
case. The long-ranged nature of the electrostatic interactions and
the large number freedom degrees introduced by the counterions
originate severe difficulties to the SOCF analytical treatment. Pio-
neering studies on the influence of electrostatic interactions on
polyelectrolyte stiffness were undertaken by Odijk [38] and, Skol-
nick and Fixman [39] performing a perturbative calculation on
a slightly bent rigid charged rod using the DebyeeHuckel approx-
imation. They found a simple exponential decay for the SOCF of the
type:

hcos qðsÞi ¼ exp


� s
lP

�
(18)

where the total persistence length lP is:

lP ¼ l0p þ lep (19)

l0p is the intrinsic persistence length defined above and lep the
electrostatic contribution. The concept of a unique persistence
length of a polyelectrolyte, applied to a flexible or semiflexible
chain has been questioned using computer simulations [40,41]. In
the present work, we have obtained no satisfactory fittings to
equation (18) for flexible and semiflexible polyelectrolytes. Petra
Bacova [42] found a suitable fit for the simulated polyelectrolyte
SOCF with a double exponential function:

hcosqðsÞi ¼ Bexp

 
� s
l0pþ lep

!
þð1�BÞexp

 
�s

lepþð1�BÞl0p
l0p
�
l0pþ lep

	
ð1�BÞ

!

(20)

This expression was obtained by Mangui and Netz [43] who
considered, in their theoretical study a charged polyelectrolyte,
with a Gaussian statistics in a solution of a monovalent salt. The
chain was assumed to be of infinite length and the electrostatic
interactions were treated at a linear level with a DebyeeHückel
screened interaction between charges due to the presence of
monovalent counterions and salts. This treatment neglects non-
linear effects connected to counterion condensation [44], as well as
chain-end effects [45], present in our simulations. The fitted curves
of the simulation results according to equation (20) are shown in
Fig. 3b, using the values for l0p obtained with the neutral polymer
case. We considered chain segment separations s � 30, since below
this separation the two decays predicted by equation (20) are
evident. Above this separation there is a third decay resulting from
the effects of chain ends, which were not considered in the deri-
vation of equation (20).

The electrostatic persistence length lep obtained through equa-
tion (20) does not vary significantly with the bending constant, but
is highly sensitive to the chain size. The approximate lep values are
10, 20, 40, and 60 nm for chains with 30, 60, 90 and 120 monomers
respectively. This means that lep has a magnitude comparable to the
chain contour length (Nmpol � 1) � l0 because in the salt-free
conditions the electrostatic interactions have the same reach as the
size chain used.



Table 2
Detail of polyelectrolyte complex systems used in the present work.

System Npa Nmpa Npc Nmpc

S1 1 60 2 30
S2 1 90 3 30
S3 1 120 4 30
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4.2. Morphology of polyelectrolyte complex

In order to study the polyelectrolyte complex morphology we
have chosen a representative subset of parameters for a first
approximation to the problem, with particular emphasis on size
and stiffness. We will work with three systems, denoted S1, S2 and
S3, as described in Table 2.

Each system is made of a “long” polyanion chain and several
“short” polycation chains. The long polyanion chainwas given three
different sizes: Nmpa ¼ 60, 90, 120 for the S1, S2 and S3 systems
respectively; it also had variable stiffness governed by the kbend, pa
values. In the case of the polycation chains, we have considered
Fig. 4. Typical configurations obtained from the simulations of system S1 with different valu
kbend, pa ¼ 10, (d) kbend, pa ¼ 50. The long polyanion chain contains 60 monomers and the
them as totally flexible chains (kbend, pc ¼ 0), with Nmpc ¼ 30. We
added as many short polycation chains as necessary to obtain
a system with equal amounts of polycation and polyanion
monomers.

Fig. 4 shows several configurations obtained from simulations
with different stiffness values of the long chain (red one) combined
with the short flexible chains (blue ones). Each panel corresponds
to a single trajectory. Panel 4a shows three characteristic structures
formed by a fully flexible long chain complexedwith shorter chains.
The final complex structures present a globular shape. When the
long chain stiffness is increased kbend, pa ¼ 4, the structures are no
longer globular and become more stretched, yielding pseudo-
toroidal shapes (panel b). With a larger bending constant, kbend,
pa ¼ 10 the presence of toroidal structures becomes evident (panel
4c). Some highly elongated shapes are also found. When we reach
extreme rigidity setting kbend, pa¼ 50, elongated structures with the
shape of rigid rods are formed, but different from those obtained
with kbend, pa ¼ 10. While the latter are obtained by roughly folding
the chain in half, yielding an U shaped structure, in the former case
the chain is fully extended.
es of the bending constant for the polyanion chain, (a) kbend, pa ¼ 0, (b) kbend, pa ¼ 4, (c)
two short fully flexible polycation chains contain 30 monomers each.
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A probability density function P(A) can be estimated by building
a histogram of asphericity A values from the complex structures
obtained from Monte Carlo simulations. We have considered four
Monte Carlo separate runs for each histogram, keeping all model
and system parameters fixed but changing the random seed and
therefore the initial configuration.

Fig. 5 shows three histograms of the asphericity probability
density function for complexes of system S1 formed by a long chain
of 60 monomers, with different bending constants and two short
fully flexible chains of 30 monomers each. The values of bending
constant were kbend, pa ¼ 0, 10, 50 for Fig. 5a, b, and c respectively.

When the long chain is totally flexible kbend, pa ¼ 1, most
asphericity values are below 0.35, Fig. 5a, with maximum values
close to 0.1e0.15. These results suggest that under these conditions
the complex structures have a globular morphology, of the type
shown in Fig. 4a. By increasing polyelectrolyte stiffness values to
higher ones, kbend, pa ¼ 10, Fig. 5b, the probability function changes
qualitatively. Under these conditions two peaks are obtained in the
probability histograms, one around A ¼ 0.25 and another close to
A¼ 0.9. This means that the complex structures are toroidal or rod-
like. If the stiffness of the chain is increased to very high kbend,
pa¼ 50 values, the resulting structures have asphericity values close
to unity, evidencing the presence of rod-like structures.

We can summarize the previous information by constructing
a diagram which graphically depicts the morphological probabili-
ties as a function of the stiffness of the long chain. The probability of
observing a globular structure PG is defined as:
Fig. 5. Histograms of the asphericity probability density for complexes of system S1
formed from a long polyanion chain (60 monomers) with different bending constants
and two short (30 monomers) fully flexible polycation chains. (a) kbend, pa ¼ 0, (b) kbend,
pa ¼ 10, (c) kbend, pa ¼ 50.
PG ¼
XA<0:2

A¼0

PðAÞ (21)

i.e., as the probability sum of finding structures with A values
between 0 and 0.2. Similarly, the probabilities of observing toroids
PT and rods PR morphologies are defined as:

PT ¼
XA¼0:3

A¼0:2

PðAÞ (22)

PR ¼
XA¼1

A¼0:8

PðAÞ (23)
Fig. 6. Probability of obtaining a given type of morphology (globule, toroid, and, rod)
as a function of the bending constant for different systems S1, S2 and, S3. Top: S1,
Middle: S2, bottom: S3.



C.F. Narambuena et al. / Polymer 51 (2010) 3293e33023300
Fig. 6 presents the morphologic probabilities Pg, PT and, Pg of
finding a given structure type as a function of the stiffness of the
long chain for the different systems. For the S1system, Fig. 6a, the
long chain with low bending constant kbend, pa < 4, the globular
structure is the predominant form observed, but when the long
chain is semiflexible 5 < kbend, pa < 10, the morphology is more
likely to be that of toroids or rods, mainly that of the last. For
stiffness corresponding to kbend, pa > 10 only rod structures are
observed, in agreement with the qualitative conclusions drawn
from the structures of Fig. 4. Fig. 6b shows the plots for the S2
system where it can be noticed that its behavior is similar to the
system S1, with the presence of the morphologies in a comparable
relative proportion as a function of the polyanion stiffness. System
S3 displays certain peculiarities with respect to S1 and S2. It is
remarkable that a mixture of rods and toroids is obtain at kbend,
pa ¼ 10, but the predominance of rods is reverted and the toroid
morphology is the more likely. This behavior extends up to kbend,
pa ¼ 20. In addition, the presence of toroids remains until kbend,
pa¼ 40, denoting that the toroidal stability range increases in the S3
system.

In the following discussion we analyze the local structure of the
polyanion chain for different complex morphologies obtained for
the S1 system. This is addressed by calculating the SOCF of the long
polyanion chain in the complex for different values of the bending
constant kbend, pa, as shown in Fig. 7.

When the long chain is totally flexible, the orientational corre-
lation function decreases to values less than zero and shows
aminimum close to s¼ 8 which then increases tending to zero; this
correspond to the globular structure. When the stiffness of the
chain is increased by setting kbend, pa ¼ 4, a maximum occurs after
the minimum, resulting in a functional shape which resembles
a damped cosine. The minimum and maximum are approximately
localized at s ¼ 14 and s ¼ 33 respectively. For a higher bending
constant (kbend, pa ¼ 10), two types of structures appear, toroids and
rods, which have oscillatory and monotonically decreasing
behavior respectively, Fig. 7c. The oscillations under this condition
are more intense, and the minimum and maximum are close to
s ¼ 19 and s ¼ 38 respectively. Finally, for a very high bending
constant, the orientational correlation function becomes very
Fig. 7. SOFC for the long polyanion chain in the complex formed in the S1 system for differe
kbend, pa ¼ 50.
similar to that of a neutral polymer with a similar stiffness. After
trying various functional dependencies, it comes out that the
previous correlations can be adjusted satisfactorily with a single
mathematical expression:

hcos qðsÞi ¼ cos


su

A0

�
exp



� su

A1

�
(24)

where A0, A1 and u are parameters. The interpretation of this
expression and its parameters is beyond the scope of this paper and
therefore subject of upcoming work.

As we have seen, polyelectrolyte complexes take a limited
number of morphologies, i.e., there are certain morphologies that
become more stable depending on the size and rigidity of the
chains. In particular, there are conditions where two or more types
of morphologies are possible. For example when Nmpa ¼ 60 and
kbend, pa ¼ 10 toroids and rods coexist, something which also
happens at Nmpa ¼ 90. However, at Nmpa ¼ 120 the range of
bending constant values where toroid structures are stable is
between kbend, pa ¼ 10e40. This means that these structures have
a greater range of stability as the size of the polyanion chain
increases. We have analyzed in detail the structure of toroids
obtained under different sizes and rigidities of the polyanion chain.
In the following discussion, wemake a first attempt to correlate the
toroid structure formed with the intrinsic persistence length and
the electrostatic interactions occurring in the polyanion chains.

Fig. 8a, b and c show three typical complex configurations
obtainedwith polyanion chainswith lengthsNmpa¼ 60, 90 and 120
respectively, upon the addition of polycation chains Nmpc ¼ 30 to
neutralize the polyanions (systems S1, S2, and S3, summarized in
Table 2). The polyanion has a bending constant of 10. The SOCF for
the three complexes shown in Fig. 8 a, b and c is plotted in Fig. 8d.
We note that this function has the shape of a damped cosine, with
maxima and minima at similar locations. This indicates that the
polyanion chain is closed so that it maintains a very similar shape
although the size of the polyanion chain is different. A measure of
the radius of the toroids can be obtained by averaging the largest
eigenvalue of the inertia matrix equation (15). According to this, the
calculated radius of the three complexes as a function of the
nt values of its bending constant, (a) kbend, pa ¼ 0, (b) kbend, pa ¼ 4, (c) kbend, pa ¼ 10, (d)



Fig. 8. a), (b) and (c) are typical configurations of toroid systems S1, S2 and S3 respectively. (d) SOFC for the long polyanion chain in the complex formed at the systemsS1, S2 and S3
with kbend, pa ¼ 10. (e) Toroid radius for systems S1, S2 and S3 at different bending constants.

C.F. Narambuena et al. / Polymer 51 (2010) 3293e3302 3301
bending constant is shown in Fig. 8e. For kbend, pa ¼ 10 we see that
the three complexes have radii of the same order 2.3 � 0.2 nm,
2.8 � 0.3 nm, 3.0 � 0.5 nm for S1, S2 and S3 systems respectively.
These results suggest that the final structure of the nanotoroids is
mainly determined by the intrinsic rigidity of the polyanion chain
and not by its size. On the other hand, the electrostatic persistence
length, very different for the three systems considered (see Table 1)
seems not to play a relevant role. The reason for this may be that
this quantity has only a meaning for the isolated polyanion chain,
losing its significance when it becomes complexed.

5. Conclusions

We have employed Monte Carlo simulations and a model based
on a coarse grain description of polyelectrolytes in order to analyze
the existence of complex structures formed from the interaction
between polycations and polyanions. In particular, we have studied
the effect of chain stiffness on the final structure of resulting
complexes. Chain stiffness was controlled by means of an angular
harmonic bending potential whose intensity was varied to achieve
flexible chains, semiflexible chains and rigid rods. Chain stiffness
was characterized by local and global parameters. In this respect, in
the case of a neutral polymer, the SOCF was found to exhibit
a simple exponential decay, while in the case of the polyelectrolyte
it has a more complex behavior that can be approximated by
a double exponential, as long as end effects are left aside. After the
stiffness characterization, the properties of complex structures
were studied by allowing the interaction between a polyanion
made of 60, 90 or 120monomers and totally flexible cationic chains
of 30 monomers. This interaction resulted in the formation of
different morphologies, like globules, toroids and rods. Generally
speaking, when the polyanionic chain is totally flexible, a globular
structure appears. When the chain is semiflexible, mixtures of
toroids and rods arise, whereas in the rigid case only rods are the
most likely formations. The SOCF of the polyanionic chain presents
interesting shapes when it is forming part of the complex. It
exhibits forms that range from a single minimum for the totally
flexible polyanion to a damped cosine for the semiflexible poly-
anion, or a linear decay for the rigid polyanion. All these correla-
tions may be synthesized into a product made of cosines and an
exponential function.

One of the most important factors affecting complex
morphology is the chain length of the polyanion. It was observed
that longer chains display higher occurrence percentage of toroids
than of rods. However the structure of the toroids as characterized
by SOCF and the radius do not depend significantly on chain length.
This suggests that the final structure of the toroid is more depen-
dent on the intrinsic rigidity of the chain than on the electrostatic
contribution. Using rigid chains for the representation of polycation
and polianion, Guskova et al. [27] obtained toroids at low temper-
ature and with large chain sizes. We obtained toroids at room
temperature, and the probability of observing toroid PT increased
with the chain size. This means that the formation of toroid
structures is favored by the mixture of fully flexible and semi-
flexible chains.

The presence of toroids, rods and globular structures indicates
that polyelectrolyte complexes have complicated energy land-
scapes. Our numerical studies showed that the energies associated
with toroid and rodlike structures are comparable in certain
circumstances. The next task to be tackled for the present system is
the calculation of the free energy for the formation of complex
structures, in order to analyze the relative stability of the different
morphologies, especially in those ranges of the bending constant
where they appear to coexist. This will allow to decide which
structure is the real ground state of the polyelectrolyte complexes
in the experimental conditions considered.

Another issue to be considered is the dynamics of complex
formation. As a more distant goal, we can mention the study of
complex formation on charged surfaces, in comparison with the
analogous process in solution.
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