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Abstract  

In this work, the weak polyelectrolyte (PE) adsorption on a strong cationic surface is 

studied with constant pH Monte Carlo simulations using a coarse-grained model. When a large 

number of PE chains is added to the system, the PE adsorbed amount vs pH curve exhibits a non-

monotonic behavior, with the appearance of a maximum close to the intrinsic p���-value of the 

PE titratable groups. The apparent p��-value of the PE chains shows a non-trivial tendency 

depending on the pH-value and the surface coverage degree. In increasing the pH-value, the 

small anions that accompany the cationic surface are replaced by PE chains and small cations. 

For pH > ~ p��� + 1, an evident charge reversion of surface is observed.  These results are 

explained analyzing the interplay between the attractive and repulsion electrostatic interactions 

between the different components of the system (inter- and intra-charged monomers of PE 

chains, the strong cationic surface and small ions) and their effects on the PE chain ionization. 
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1. Introduction 

 Polyelectrolytes (PEs) are polymer chains with functional groups capable to ionize in 

certain conditions.[1] On one hand, when the PE functional groups are fully dissociated 

independently of bulk condition, the polyelectrolyte is called to be a strong PE. On the other 

hand, when the dissociation degree is pH-dependent, the polyelectrolyte is considered a weak 

PE. When PEs are dissolved in a polar solvent (e.g. water), they become ionized and they can be 

adsorbed on charged surfaces. The PE adsorption on a charged substrate can modify the interface 

properties of substrates, which can be of interest for industrial application on paper technology, 

water treatment, etc.[2,3]   

The strong PE adsorption on charged surfaces has been extensively studied by means of 

experimental, theoretical and computational studies. One interesting phenomenon experimentally 

observed is that the amount of charge due to adsorbed polyelectrolyte chains can compensate or 

even overcompensate the surface charge.[4,5] This phenomenon, known as charge reversion, has 

been profited in several applications, being polyelectrolyte multilayer formation the prime 

example. In this technique, a charged substrate is modified by cyclic adsorption of positive and 

negative PE chains.[6] This process is possible due the charge reversion taking place on the 

substrate at every adsorption step.[6] The amount of adsorption of strong polyelectrolytes also 

depends on the curvature (concave or convex) of charged nanoparticles.[7] On the other hand, 

the charge of strong polyelectrolytes gives different kinds of interactions between charged 

surfaces and/or nanoparticles depending on the sign of the charge and the strength of 
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adsorption.[8] Computational studies using Monte Carlo simulations have been undertaken to 

understand the phenomenon of PE adsorption.[9–12] In these studies, the PE chain is modeled as 

a set of beads joined by harmonic bonds and the substrate as an uniformly charged surface. 

Caetano et al. demonstrated that the conditions of critical PE adsorption on a charged surface are 

highly dependent on the number of PE chains in the system.[13] Since, the PE-surface 

interaction and lateral interaction between adsorbed chains plays key roles in the adsorption 

process. Narambuena et al. have proved that it is possible to observe a significative charge 

reversion using simple coarse-grained models [10,11] and that the adsorption proceeds with a 

non-trivial counterion condensation degree on the polyelectrolyte chains.[12] However, charge 

reversion is a topic that even nowadays leads to strong debates on its exact explanation.[14]  

 In the weak PEs case, its adsorption on a charged surface exhibits a more challenging and 

complex physicochemical process compared to their strong counterpart. This is because the 

ionization behavior of weak polyelectrolytes in solution is regulated by the binding of small ions 

(protons, metal ions, etc.) present in solution, and their charge depends on pH, ionic strength, 

conformational changes and interactions with other polyelectrolytes, surfaces and 

nanoparticles.[15–17] This mechanism, known as charge regulation (CR), is of great importance 

in order to understand the physicochemical behavior of polyelectrolytes in a wide range of 

situations, as for example, in receptor-ligand equilibria in biochemical systems, supramolecular 

chemistry, wastewater treatment, stability of colloidal systems, etc.[18] On the other hand, this 

mechanism affects the interactions of weak polyelectrolytes with other polyelectrolytes,[19] 

protein-surface,[20–24] protein-protein,[25,26] protein-RNA,[27] protein-strong 

polyelectrolyte,[28,29] protein-weak polyelectrolyte,[30,31] between surfaces[32] and between 

weak polyelectrolytes and nanoparticles.[33–36] There are few attempts to study theoretically 
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the effect of CR in the interaction of weak polyelectrolytes, mainly focused on rigid and linear 

polyelectrolytes.[37] Most of the studies on this effect has been performed using constant–pH (or 

Semi-Grand Canonical) Monte Carlo simulations based on coarse-grained models.[34,35,38–41]  

In the particular case of a weak PE chain close to a charged flat surface, the proton 

concentration and the electrostatic environment are significantly different from those in the bulk 

values. This difference becomes more significative as the charge density of the surface is 

increased. In turn, these differences become more noticeable as the ionic strength of the medium 

decreases. Nowadays, weak polyelectrolyte adsorption is still a relatively unexplored topic, with 

only a small number of experimental and theoretical works on this topic.[42–45] The first 

theoretical approach to study the adsorption of weak flexible polyelectrolytes on charged 

surfaces was made in a Self-Consistent Field (SCF) theory by allowing the dielectric constant 

and the dissociation degree to vary with the distance from the surface.[43,44] These models have 

been applied to study the adsorption of polyacrylic acid (PAA) adsorption on a positively 

charged polystyrene latex.[45] The latex particle was strongly charged in the all the pH range 

studied. At low pH values, the adsorption was found to proceed similarly to the case of a neutral 

polymer chains interaction with a charged surface, because at those pH-value polyacids have a 

very low charged monomer fraction. On the opposite case, at high pH-values, the adsorption 

behavior of strong PE chains is recovered. However, between both limiting pH conditions, the 

situation becomes more complex and the polyelectrolyte adsorption versus pH curve was 

observed to have a maximum located at pH-values below the p�� of the weak PE titratable 

groups.[45] This can be explained by the action of two antagonistic electrostatic phenomena. On 

one hand, the negatively charged PE chains are electrostatically attracted to the positively 

charged surface, which promotes the PE adsorption. On the other hand, PE chains are 
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electrostatically repelled to each other, which hinders their adsorption to the charged surface 

since it reduces their inter-chain distance. At intermediate pH-values, the polyelectrolyte chains 

are only partially negatively charged which causes them to be absorbed to the charged surface, 

but it is not enough to cause significative inter-chain repulsion. By increasing the pH-value, the 

charged monomer fraction accordingly increases, and consequently the amount of PE adsorbed 

into the surface is lowered. The interplay between the electrostatic interaction and ionization of 

titratable groups of PE is far from being fully understood. 

In this work, we use constant pH Monte Carlo simulations to study the adsorption of 

weak PE chains on a substrate with positive charges distributed in a square lattice. The adsorbed 

amount of PE and small ions, the PE degree of dissociation and the electrostatic potential are 

estimated as a function of �. The article is organized as follows: in section 2, the computational 

methods are descripted in detail whereas the results and discussion are developed in section 3. 

Finally, the conclusions can be found in section 4.  

2. Computational Methods 

2.1 Coarse grained models 

The system is composed by �� particles in total: 

�� = ����� + �� + �� + �� 

(1) 

where ����� is the number of charged particles in the surface and �� = ���� is the total 

number of monomers in the system, distributed in a �� number of polyelectrolyte chains with �� 
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monomers per chain. �� and �� are the number of small cations and anions of the monovalent 

salt, respectively. The solvent is modeled as a dielectric continuum with relative dielectric 

constant ��. 

 

 

 

The polyelectrolyte is represented as a linear chain of �� monomers, as can be observed 

in Fig. 1A. The monomer � is joined with a consecutive monomer � + 1 by a bond with a 

potential energy:  

���� ! = "#�� $%!,!'( − %�*+
 

(2) 

CA

B

Figure 1. Simulation box and coarse-grained model for the weak acid polyelectrolyte chain. 

A) Coarse grained model that represents the weak polyelectrolyte. B) Positively charged 

square lattice that represents the strong base substrate. C) Simulation box with dimensions , × , × . with ,+ ≈ 85 nm+ and . = 50 nm. Jo
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where %!,!'( is the distance between the monomers �  and � + 1 and %� is the equilibrium bond 

length. The potential energy is characterized by a spring constant "#�� = 105"�6, where "� is 

the Boltzmann’s constant and 6 = 300 � is the absolute temperature. The "#��  value is chosen 

high enough to avoid significant fluctuation in the distance between neighbor monomers. Each 

monomer is modelled as a rigid sphere with a diameter 8 = 0.2 nm centered in the position of 

the monomer. In turn, each monomer � has a charge ;!, located in its center, that can be either 0 

or -1 elementary charge, e, for a neutral or ionized monomer, respectively. Since the 

polyelectrolyte is a weak polyacid, the charge of the monomers is considered a fluctuating 

property and it varies within the simulation. 

The simulation box (Fig. 1B) is a rectangular parallelepiped with volume < = , × , ×
., and sides , and .. Two solid walls are localized at = = 0 and = = .. Charged spheres are 

centered at = = 0, in order to mimic the strong basic groups of the substrate.  Those charged 

particles are distributed forming a square lattice so that the total number of surface particles is 

����� = 13 × 13 = 169. Within the simulation, the particles position is fixed and thus the square 

lattice is preserved. The particles are solid spheres with a diameter 8 = 0.2 nm with a punctual 

positive elementary charge, e, located in its center. Since the particles enclose strong basic 

groups, its charge is kept constant and it is always positive, independently of the pH conditions 

of the media. The charge of the surface particles generates a positive surface charge density 

@���� = ����� A,+  

(3) 
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which is settled to @���� = 0.2 A nm+⁄  (around to 32 mC m+⁄ ). Consequently, the simulation 

box length is ,+ = 845 nm+ with , ≈ 29.069 nm and a distance between neighbor surface 

particles of 8� = EA @����⁄ ≈ 2.2 nm. 

  The electrostatic interaction between two charged particles � and F, whose centers are 

separated a distance G!H, is calculated with a coulombic potential with an excluded volume 

correction 

�IJ$G!H* = K%� LMLN�MN if G!H > QM+ + QN+∞  if G!H ≤ QM+ + QN+
   

(4) 

where T! and TH are the charge valence of particles � and F, respectively and %� is the Bjerrum 

length: 

%� = UV
WXYZY[\]^  

(5) 

where �� is the permittivity of the vacuum and �� = 78 is the dielectric constant for water at 

room temperature. %� represents the separation between two elementary charges that have an 

electrostatic energy equal to the thermal energy. For two interacting particles located at a smaller 

distance than %�, their electrostatic interaction is greater than the thermal energy. For water at 

room temperature, its value is %� ≈ 0.71 nm. The long-range electrostatic interactions are treated 
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with the external potential method (EPM), which was firstly proposed by Torrie and Valleau[46] 

and subsequently modified by Boda.[47] 

Since the modeled chain represents a weak polyelectrolyte, the number of charged 

monomers is governed by the ionization process, which depends on several variables such as the 

pH-value, the salt concentration, etc. This process is classically described using the weak acid-

base chemical equilibrium, which for a protonated acid group of the chain −HA reads 

 

−HA ⇆  −Ab + H' 

(6) 

 

where −Ab is the ionized deprotonated weak acid of the chain and H' is a proton. This 

equation describes the deprotonation process of the weak acid and it is governed by its acid 

equilibrium constant ��∘ , defined as a function of the chemical activities d! of the species 

involved  

 

��∘ = dbef ∙ dhidbhe . 
(7) 

 

��∘ measures the weak acid tendency to dissociate. Each chemical activity is connected with the 

molar concentration j! by d! = j! k!, where k! is the activity coefficient. Additionally, the ���∘ is 

defined as  

p��∘ = −log(���∘. 
(8) 
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For ideal complexation/protonation process, when all the acid-base groups have the same 

value of the acidity equilibrium constant, ��∘, and in infinite dilution (k–e, k–eh → 1), the ideal 

dissociation degree of the polyelectrolyte, αrst  can be calculated as a function of the pH =
−log(�dhi, from the well-known Henderson-Hasselbalch equation, as  

αrst = jefjef + jhe = 11 + 10(�vw∘b�h). 
(9) 

Far from ideal conditions, the protonation equilibrium is governed by the PE apparent 

dissociation constant �����, which provides information about the average affinity of the 

macromolecular sites for the protons.[18,48–50] The �����-value, in general, depends on the 

charge of the macromolecule, different at each pH and ionic strength value, and can be 

calculated using a generalization of the Henderson- Hasselbalch equation [51]    

p����� = pH − log y zrs1 − zrs{ = |(pH, }, jrs, … ), 
(10) 

where zrs is the average dissociation degree of the titratable groups of the polyelectrolyte in 

non-ideal situations, which in this work will be measured by constant pH Monte Carlo 

simulations. We consider all the PE titratable monomers to be identical with the same intrinsic 

dissociation acid constant value  p��∘ = 4.25, which is a value typically found in polycarboxylic 

acids.  

 

2.2 Monte Carlo method 

The Monte Carlo (MC) simulations were performed using the Metropolis 

algorithm.[52,53]  
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 In order to effectively sample the configurational space and equilibrate the system, the 

following trial movements are done: (i) translational motion of small ions and monomer 

particles, (ii) translational motion of the PE chain as a whole, (iii) pivot rotation of the PE chain 

and (iv) flip rotation of the PE chain.[54] The trial movements were accepted according to the 

probability: 

 

min�1, exp(−�∆�)� 
(11) 

where ∆� is the total energy difference between the initial and trial states.  

The ionization of the titratable groups was changed performing a MC semi-grand 

canonical procedure.[55,56]  Every hundred MC steps, the charge of each titratable monomer is 

increased or decreased by 1 unit due to proton binding/unbinding to the group. In order to 

maintain the system electroneutrality, the creation (deletion) of a small anion was therefore 

required. Those trial protonation/deprotonation movements are accepted according to the semi-

grand canonical probability 

min $1, eb�∆���±��(�(�hb�vw)* 

(12) 

Where ∆�s� is the total change in electrostatic energy and the sign ±  can be either - or + 

corresponding to the protonation or deprotonation, respectively.[55,56]  

For all the simulations performed, the total number of MC steps was 2 × 10�. Every simulation 

was equilibrated in the first 10� steps, necessary to stabilize the ionization process, and the 

remaining 10� steps were used to calculate the ensemble averages. The control variables, which 

are fixed throughout the simulation, are: the number of polyelectrolyte chains, N�,; the proton 

chemical potential (so that the number of protonated/unprotonated PE groups is not fixed); and, 

Jo
urn

al 
Pre-

pro
of



 13

finally, the chemical potential of the salt (the number of small ions is thus variable). The 

chemical potentials of the proton and the small ions are supposed to be fixed by the presence of 

an external reservoir. The salt concentration is fixed to j���� = 1 mM in the reservoir using an 

algorithm of insertion/deletion of neutral pairs of salt particles. This procedure as well as its trial 

movement probability are explained in detail in [57] and it was applied to the computational 

study of the diffuse double layer in an ionic system next to a uniformly charged plane 

surface.[46]  

 

2.3 Measured quantities  

The local density of monomers, j�(=) (in nm–�) is measured as a function of the distance 

to the charged surface at = = 0 using a histogram methodology. The simulation box is divided in 

parallel bins with area ,+ and thickness Δ= = 0.1 nm, so j�(=) can be calculated as 

j�(=) ≈ j�(=!) = 〈��(=!)〉<# , 
(13) 

where 〈��(=!)〉 is the average number of monomers localized at a distance from the surface 

between =! and =! + Δ= and the bin volume is <# = ,+Δ=. The total number of monomers can 

be calculated as �� = ���� = ∑ 〈��(=!)〉!�5��!�( . The local density of small cations and anions, 

j�(=) and j�(=) can be defined of analogous way. 

The PE adsorbed amount Γ� is measured counting the total number of monomers 

adsorbed on the volume compress between the surface (= = 0) and a parallel plane located at 

distance = = 2.5 nm 
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Γ� = � j�(=)d=��+.5 ��
��� ≈ � j�(=!)Δ=+5

!�( . 
(14) 

The distance = = 2.5 nm, taken as the superior limit in the integral, is chosen considering 

the concentration profiles. In turn, the ionization degree of adsorbed monomers is calculated as: 

αrs = �� ��(=)d=��+.5 ����� �
� j�(=)d=��+.5 �����

 

(15) 

where  ��(=) (in nm–�) is the local charge density due to the charged monomers of the PE 

��(=) ≈ ��(=!) = 〈��(=!)〉<   

(16) 

and ��(=!) = ∑ TH(=!)¡¢(�M)H�(  is the total local charge due to the �� monomers located 

between =! and =! + Δ=. TH(=!) is the electrical charge of monomer j.  

The electrostatic potential at a distance = from the charged surface £(=) is calculated as 

follows:[47,58,59]  

£(=) = − A���� � �(=′)(=¥ − =)d=′¦
�  

(17) 
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 15

 where the �(=) is the total charge density at a distance = from the charged surface, and it 

is calculated as  

�(=) = ��(=) + ��(=) + ��(=) 

(18) 

where ��(=) and ��(=) are the local charge density at = due to the small cations and 

anions respectively, and it is calculated in the same way as the monomer charge density (Eq. 16). 

The deduction of Eq. 17 can be found briefly explained in the Supplementary Material (Section 

S1).   

 

3. Results and discussion 

The system studied is the adsorption of weak PE chains with �� = 60 (60 monomers per PE 

chain) and %� = 0.50 nm. The weak PE adsorb on a strong charged surface represented by a 

square lattice of 13 × 13 positive charges. This lattice with ����� = 13 × 13 = 169 charges is 

placed on a surface with § = 845 nm+ in order to set the charge density of surface to the value 

@���� = 0.2 A nm+⁄ .  
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 Fig. 2 shows the concentration of monomers as a function of the distance z from the 

charged surface at different pH-values ranging from 2 to 8, when four PE chains (Fig. 2A) and 

ten PE chains (Fig. 2B) are added. In the first case, four PE chains are added to the system, 

�� = 4, so there is a total of �� = ��  ∙ �� = 240 monomers inside the simulation box. At 

pH = 2, the monomer concentration is well distributed with a maximum value close to = ≈
1 nm. As the pH-value increases the position of the concentration maximum shifts to the surface 

(located at = = 0) and it increases in intensity, which suggests that the polyelectrolyte chains are 

more attracted to the surface. At pH = 4, the concentration profile has a maximum located at 

= ≈ 0.5 nm and most of the monomers are located at a distance less than 2 nm from the surface. 

This concentration distribution reflects a statistical average of a set of conformations that the 

polyelectrolyte takes throughout the Monte Carlo simulation. Let us compare the z distance of 

maximum adsorption with the dimensions of the polyelectrolyte chain. Two limiting values can 

be considered: the diameter of a monomer (8 = 0.2 nm) and the end-to-end distance of the fully 

0 1 2 3 4 5
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0.4
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B
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Figure 2. Concentration of monomers as a function of distance = from the surface at different pH-values ranging from 2 to 8 and for two different numbers of PE chains �� added to the 

system: A) �� = 4 and B) �� = 10. 
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stretched conformation of PE chain, which is approximated by the chain contour length .ª =
$�« − 1*%� = 29.5 nm.  The maximum localization (= ≈ 0.5 nm) is much smaller than the size 

of the stretched chain and just a couple of times the diameter of the monomer. This fact indicates 

that the PE chains adopt a conformation with the most of monomers close to the surface, so they 

are placed co-planarly to the surface. At pH = 6 and pH = 8, the maximum of adsorption is 

closer to the surface, but the intensity of concentration maximum slightly decreases as the pH 

increases. Let us now see how this picture changes if ten chains of chains PE are added to the 

system (i.e. �� = �� �� = 600 monomers in total), which is shown in Fig. 2B. At pH = 2, the 

concentration profile of the PE chains shows a maximum at a distance = ≈ 1 nm from the 

surface. It can be also observed that as the pH-value increases the concentration of PE 

accordingly increases. At pH = 4, it can be observed an increase in the intensity of the peak 

located at = ≈ 0.6 nm.  However, it can be noted that, for pH = 6 and pH = 8, the concentration 

of monomers close to the surface abruptly decreases.  

 In order to better understand the latter observations and to quantify the weak PE - surface 

interaction, we calculate the PE adsorbed amount Γ� (Eq. 14) as a function of pH. In Figure 3, 

Γ�  is shown as a function of the pH-value for different �� values ranging from 4 to 12. When 

four chains are added to system (�� = 4, orange triangles), the adsorption is moderate at low 

pH-values. The amount of PE adsorbed increases as the pH-values increases, until a plateau is 

reached at pH = 3. The adsorption plateau value is close to Γ� ≈ 0.28 monomers nm+⁄ , which 

is close to the maximum possible �� ,+⁄ ≈ 0.284 nmb+, which suggests that the chains are 

fully adsorbed on the surface.   
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 When six chains are added to the system (�� = 6), the adsorption curves show a high 

plateau for pH-values ranging from 3 to 5 with a value Γ� ≈ 0.42 monomers nm+⁄  which is 

close to maximum possible �� ,+⁄ ≈ 0.426 nmb+. At high pH values, the adsorption decreases 

to a low valley of Γ� ≈ 0.35 monomers nm+⁄ . The appearance of a maximum adsorption is 

more evident in increasing the �� value. The systems with �� = 8, �� = 10 and �� = 12  have 

maximum of adsorption values equal to Γ� ≈ 0.56, Γ� ≈ 0.7 and Γ� ≈ 0.82 �¬–+, respectively, 

which are close to the corresponding maximum value possible �� ,+⁄  namely ≈ 0.57, ≈ 0.71 

and ≈ 0.85 nm–+ respectively. This fact indicates that the chains are fully adsorbed in the 

maximum in the pH range between pH =  3 and pH = 5. However, at high pH values the 

adsorption has a similar magnitude (Γ� ≈ 0.41 monomers nm+⁄ ) for the three cases, which 

suggests that the surface is saturated of PE. The presence of a maximum in the adsorption of 

1 2 3 4 5 6 7 8 9 10
pH

0.0

0.2

0.4

0.6

0.8

1.0

Γ m
 [

nm
-2

]

N
p
 = 12

N
p
 = 10

N
p
 = 8

N
p
 = 6

N
p
 = 4

Figure 3. PE adsorption on the charged surface as a function of pH at different number of PE 

chains added to the system. The PE chains have �� = 60 monomers and %� = 0.50 nm. The 

solution has a salt concentration equal to j���� = 1 mM.   
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weak PE on strong charged surface was first observed experimentally by Tanaka et al. four 

decades ago.[42] In turn, several theoretical studies using mean field approach was performed in 

order to explain these phenomenon.[43–45] Up to our knowledge, this is the first time that the 

maximum of weak PE adsorption has been reported by means of computational simulation, 

allowing a molecular analysis of this phenomenon.  

 

 

pH = 4

pH = 7

Figure 4. Snapshots of equilibrium configurations obtained by Monte Carlo simulation at pH = 4 (top) and pH = 7 (bottom) of a system with twelve PE chains (�� = 12). The PE 

chains have �� = 60 monomers and %� = 0.50 nm and the reservoir has a salt concentration 

equal to 1 mM.   
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In Fig. 4, two snapshots of equilibrium configurations obtained by Monte Carlo 

simulation of twelve chains (�� = 12) at pH values of pH = 4 (Fig. 4 top) and of pH = 7 (Fig. 4 

bottom) are shown. The titratable groups are depicted as green and red spheres, depending if they 

are neutral o negatively charged, respectively. On one hand, it can be observed at pH = 4 that all 

the PE chains are adsorbed, adopting a fairly extended conformation. Analyzing the ionic 

presence close to the surface, it can be noted that there is not an obvious predominance of small 

anions or cations, which suggests that the adsorbed chains neutralize the positive charge of the 

substrate. On the other hand, at pH = 7 the number of adsorbed chains decreases compared with 

those at pH = 4 and it can be also observed that in this case the chains are a very and almost 

totally ionized. The chains desorption at pH = 7 can be explained by the repulsion between 

chains which pulls them back to the bulk solution. It is interesting to note that the high amount of 

negative charge of the adsorbed PE chains causes an accumulation of small cation counterions 

close to the surface, which suggests a possible charge reversion in these conditions. 

In order, to quantitatively study this phenomenon the adsorbed amount of total and 

charged monomers are estimated, as well as the number of small cations and anions close to the 

charged surface. In Fig. 5, the local densities and adsorbed amount of species are depicted. Local 

density of monomers, j�(=), local charge density of charged monomer, ��(=) are plotted as a 

function of the distance = to the charged surface in Figure 5A, showing the results obtained when 

the case with two chains (�� = 2) and pH = 4 is considered. It can be noted that the charged 

monomers are a half part approximately of total amount of monomers, which suggests that the 

monomers degree of ionization is close to 0.5. It can also be observed that is significant the 

quantity of small anions close to the charged surface. The concentration curves can be used to 

calculate the adsorbed amount by means of Eq. 13, which is depicted as a function of the pH-
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value for the cases with �� = 2  and �� = 10 in Fig. 5B and in Fig. 5C, respectively. The 

adsorbed amount is calculated for PE monomers (black circles), PE charged monomers (red 

squares), small anions (orange diamonds) and cations (cyan triangles). For  �� = 2 (Fig. 5B), at 

low pH-values only a small amount of chains is adsorbed to Γ ≈ 0.07 nmb+ and only a minima 

fraction of monomers is charged.  
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  We can note that there are a significant number of small anions close to the charged 

substrate, because they are necessary to neutralize the positive charge of the substrate. It can be 

also observed that the adsorbed amount of total and charged monomers monotonically increases 

as the pH value increase until a plateau is reached. As a natural consequence of the increase of 

charged monomer adsorbed, the anion surface concentration accordingly decreases as the pH-

value increases. However, it is important to note that the PE negative charge is not enough to 

counter the surface positive charge and there are adsorbed anions even at high pH-values. Those 

results can be compared with the ones obtained when the case with ten PE chains (�� = 10) is 

considered, which is shown in Figure 5C. Interestingly, the charged monomer surface 

concentration does not show a maximum but it increases as the pH-value increases until a 

plateau is reached, which equals the adsorbed amount of monomers.  This fact suggests that the 

PE chains adsorbed are fully ionized at pH-values larger than 8. In turn, the number of small 

anions close to the surface quickly decreases as pH increases. Around � =  4.25, the 

concentration of anions close to the surface interface vanish, and it is replaced by a cationic one. 

Furthermore, the amount of charge due to adsorbed polyelectrolyte chains Γ�� ≈ 0.2 �¬b+ (red 

filled squares) is equivalent to the surface charge density, eΓ�� ≈ @����. In other words, at this 

pH value the PE charge neutralizes the charge on the surface. Intuitively one would think that 

this is the natural limit of adsorption. However, as the pH value increases, the amount of 

Figure 5. A) Local density of monomers, j�(=), local charge density of charged monomer, ��(=) as a function of distance z to the charged surface, as well as the small anions 

concentration, j(=) , at pH = 4. B) Adsorbed amount of total and charged monomers, and 

small ions close to the charged surface as function of � when �� = 2. C) The same that B 

but with �� = 10.  The PE chains have �« = 60 monomers and %� = 0.50 nm. The reservoir 

has a salt concentration equal to 1 mM.   
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polyelectrolyte increases until it reaches a plateau after � =  8, where the amount of adsorbed 

charge is a little more than the surface charge eΓ�� ≈ 2@����. In turn, the cation adsorbed amount 

increases until a constant value at pH values larger than 7.  

At this point, these observations arise two natural questions:  

A) How does the titration curves of the weak acid PE chains change when they are adsorbed?  

B) The composition of the ionic environment close to the surface changes from small anionic to 

cationic when the pH-value is increased. This fact suggests a change in the surface-PE charge 

density. Does this ionic exchange indicate a charge reversal? 

In order to answer the first question, we calculate the PE degree of ionization (Eq. 15), 

zrs vs. pH curves obtained by MC simulation varying the number of PE chains �� from 1 to 10, 

see Fig. 6. For comparative reasons, we also plot in Fig. 6 the ideal titration curve of the PE 

(black dashed line), and the titration curve of an isolated PE chain in the bulk (black downwards 

triangles), obtained by MC simulation of a single chain without the charged surface. Note that 

for the ideal titration curve (Eq. 9) half of the groups are dissociated when the pH-value is 

pH = ���∘ = 4.25. However, for the case with a single PE chain in the bulk, the titration curve is 

shifted to the right and half of the groups are dissociated at a pH-value of 5.6, which could be 

considered a half-ionization p��-value so that p��®¯���.5 ≈ 5.6. 
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This is because in the ideal case the ionization of each monomer is independent of the 

ionization state of the others and it depends exclusively on the pH-value (Eq.  9). However, in 

the Monte Carlo simulation the probability of acceptation of ionization or deionization depends 

on both pH (in fact it depends on the difference pH − p��) and the electrostatic energetic change 

involved in the process ∆�s� (Eq. 12). The shifting of the Monte Carlo results compared to ideal 

case can be explained because of the electrostatic repulsion between the negatively charged 

monomers of the PE chain, which decreases the probability of ionization. As a result, higher pH-

values are necessary to find similar degree of ionization values than in the ideal case. It is 

interesting to compare these results with the ones obtained in MC simulation of one PE chain in 

the presence of the charged surface (violet circles in Fig. 6B). It is important to note that in the 

following cases the  zrs is calculated only of the PE chains adsorbed on the surface (see 

equation 15). The PE degree of ionization of one adsorbed chain shifts to the left compared to the 
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Figure 6. Degree of ionization of PE chains as a function of pH. A) Ideal case (Eq. 9) and MC 

simulation of an isolated PE chain (�� = 1). B) Different amounts of chains and conditions. 

The simulated PE chains have �� = 60 monomers and %� = 0.50 nm. The reservoir has a salt 

concentration equal to 1 mM.   
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results obtained in the case of the PE chain in the bulk. It is observed a half-ionization p�� value 

of p��®¯���.5 ≈ 4, which indicates that the chain has an more acid ionization behavior than the 

ideal case (p��∘ = 4.25). Now let us investigate what happens when more PE chains are added to 

the system with the charged surface. For �� = 2 (red squares in Fig. 6B), the ionization curve is 

very similar to the case with �� = 1  which suggests that the two adsorbed chains behave 

independently. However, when �� is increased to 4 (blue diamonds in Fig. 6B), the degree of 

ionization shifts to the right again. This fact can be explained because the adsorbed chains 

interact with each other in increasing the surface coverage. Interestingly, when ten chains are 

added (green triangles in Fig. 6B) the ionization behavior gets more and more interesting. At low 

pH-values, the ionization is similar to the cases with fewer chains because the chains are only 

slightly charged. However, in increasing the pH-value, the �� = 10 have two different 

ionizations. First, its ionization is close to the behavior of the cases with low �� values but for 

pH-values larger than 5 the ionization is closer to the ionization of the isolated chain in the bulk. 

In other words, when the degree of ionization is greater than 0.3, the repulsive electrostatic 

interaction between the adsorbed chains is stronger than the electrostatic interaction with the 

positively charged surface. 

To deepen the study of the acid behavior of the polyelectrolyte, we will estimate the 

apparent p��-value, p�����, as a function of pH using the Eq. 10. Figure 7 shows the p�����-

values at different conditions. The ideal value is shown in a dotted line, which has a constant 

value p����� = ���∘ since this value is independent of pH-value. Also, it is shown the acid-base 

behavior of an isolated chain in bulk as a continuous line. In this case, the chain shows a p�����-

value close to the intrinsic ���∘ value at low pH-values. 
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However, as the pH-value increases, the p�����-value increases indicating that the PE 

chain has lower capacity to ionize its acid groups (higher affinity to bind protons). This is 

because as the pH increases the amount of negative charges on the PE chain also increases, 

which increases in turn the electrostatic repulsion on possible new ionized groups. At high pH-

values, the p�����-value reaches a plateau at p����� ≈ 5.75.   All adsorbed PE chains (filled 

symbols) show a similar p�����-value of p����� ≈ 3 at low pH values, since only a small fraction 

of monomers are charged. For all systems under these conditions, the interaction between the 

surface and the PE chains predominates. As the pH increases, these systems show different 

behaviors and can be ordered in two groups: 1-2 PE chains in solution and 4-10 PE chains in 

solution.  
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Figure 7. Apparent p����� as a function of pH for different amounts of PE chains. The 

simulated PE chains have �� = 60 monomers and %� = 0.50 nm. The ideal case and MC 

simulation of an isolated PE chain (�� = 1) are depicted for comparison. The reservoir has a 

salt concentration equal to 1 mM.   
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The behavior of one chain adsorbed is shown as black filled circles. The positive charges 

of the substrate have two effects: (1) they exert an attractive electrostatic interaction with the 

negatively charged groups of the PE chain and (2) they promote the titratable groups ionization, 

generating a higher fraction of charged monomers. Therefore, the profile starts with a 

p����� −value around 3, which is below the intrinsic p��-value. For pH values larger than 4.3, 

the situation is reversed, and the  p�����-value has a less acid behavior that the ideal one 

(p����� > p��). This is because in increasing the pH-value the PE monomers are ionized and the 

intra-molecular electrostatic repulsion difficult the formation of new ionized monomers. At high 

pH-values, the adsorbed PE chain reach a higher value close to p����� ≈ 5.3. It can be also 

observed that the case with two PE chains adsorbed (red filled squares in Fig. 7) behaves in a 

very similar way of very similar form to the case with one adsorbed chain. This result suggests 

that the two PE chains do not interact significantly with each other. Then each chain (of the two) 

is adsorbed independently on the surface. 

 When larger numbers of chains are adsorbed (�� = 4, 6, 8 and 10 with diamonds and 

up, left and down triangles respectively, in Fig. 7) the p�����-values are significantly larger than 

those obtained with less PE chains adsorbed, which means that in the first case the PE chain has 

a higher affinity for protons so that the titratable groups are neutral. This is due to the increasing 

inter-molecular electrostatic repulsion between adsorbed chains. For pH-values ranging from 2 to 

6, the p����� increases as the amount of PE chains increases. This is because, in this pH range, 

the amount of adsorbed PE increases as the amount of chains are added to the simulated system 

(See Fig.5C). Then, the amount of negative charges in the surface increases and consequently so 

it does the inter-chain repulsion, which favors the proton binding affinity increasing the p�����-

values. At pH = 6, these four profiles have a similar value of p����� ≈ 5.5. This is because at 
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this pH-value coincides with the lower pH-value in the PE adsorbed amount plateau (See 

Fig.5C). Thus, at this point the surface is saturated of PE chains and some start to desorb.  

However, at higher pH-values, the trend is reversed and the   p����� decreases as the amount of 

PE chains increases. This is because for pH > 6 the amount of PE chains adsorbed is almost 

constant as a function of pH and the amount of chains added. This trend can be explained by the 

increase in the anionic atmosphere in the surface, which screens the inter-chain repulsion 

stabilizing the formation of ionized monomers.   

 Let us now answer the second question and analyze if the small ions exchange observed 

in (Fig. 5C at pH > 5) is due to a charge reversion phenomenon. This will be analyzed by 

estimating the electrostatic potential (Eq. 17) as a function of the distance to the surface z and 

can be found in Fig. 8. 
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Figure 8. Electrostatic potential as a function of distance to the charged surface. The system 

has ten PE chains (�� = 10) with �� = 60 monomers and %� = 0.50 nm. The reservoir has a 

salt concentration equal to 1 mM.   
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 Fig. 8 presents the electrostatic potential for the system with �� = 10 at different pH 

values ranging from 2 to 8. Each chain has �� = 60 and %� = 0.50 nm. It can be observed that 

for pH = 2 the electrostatic potential at the surface is around £(= = 0) ≈ 140 mV due to the 

positive charge of the surface. The potential tends to zero in increasing the distance to the 

surface. In this case, the electrostatic potential profile is mainly due to the positively charged 

surface and the small anions, since the PE chains are almost neutral. However, at pH = 3 the 

presence of adsorbed PE chains on the surface cause a relevant decrease of 25 mV in £(=) 

respect the profile at pH = 2. This can be explained since the charged monomer fraction goes 

from 10% to 20% when the pH value is changed from 2 to 3, respectively (See Fig. 6). In turn, 

the negative charge of the PE chains displaces a large quantity of anions, as can be observed in 

Fig. 5C. Since in these conditions the PE chains are fully adsorbed (see Figure 3), the charge 

contribution from the PE chain can be quickly estimated as ��zrs ≈ 120 negative charges, 

which is a similar value to the total number of positive charges on the surface. At pH = 4, the 

electrostatic potential has a drastic decay because almost all the positive charge of the surface is 

countered by the PE chains and only a few anions are located close to the surface, as can be 

observed in Fig. 5C. At pH = 5,  the electrostatic potential switches its sign and it reaches a 

minimum value of £ ≈ −40 mV at = ≈ 1 nm,  closely located to the surface. The change of sign 

of the potential proves that the adsorbed PE negative charge is enough to revert the surface 

charge, which explains why the small cation concentration increases at this pH values as can be 

observed in Fig. 5C. At higher pH values, the electrostatic potential shows similar tendencies 

with a more pronounced minimum around  £ ≈ −60 mV. This fact explains why for pH values 

larger than 6 the PE and small cation concentrations reach a plateau; it is because for pH values 

larger than 6 the surface change becomes almost pH-independent. 
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In order to better analyze the latter point, the electrostatic potential at = = 1 nm (£e ¶ =
£(= = 1 nm )) as a function of the pH-value for systems with a different number of PE chains 

�� ranging from 2 to 10 is depicted in Fig. 9. In the system with �� = 2 (green squares) the 

electrostatic potential decreases until a plateau is reached, which has a positive value. In 

consequence, charge reversion is not observed in these conditions. In the case  �� = 4 (orange 

diamonds), £e ¶ strongly decreases as the pH-value increases and becomes zero at pH ≈ 5.7. At 

larger pH-values, £��( switches its sign and it reaches a constant value around £e ¶ ≈ −50 mV. 

The pH-value where the system substrate+PE has a neutral electrostatic potential can be 

understood as the isoelectric point of the system, �}. When six PE chains are added to the system 

(black circles), £e ¶ has a strong decay, the pI is shifted to the left to pI ≈ 5 and the potential 

minimum value is £e ¶ ≈ −65 mV. In adding extra PE chains to the system, the isoelectric point 

of system shifts to lower values. 
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Figure 9. Effect of pH on the electrostatic potential at = = 1 nm, £e ¶. The PE chains have �� = 60 monomers and %� = 0.50 nm. The solution has a salt concentration equal to 1 mM.   
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4. Conclusions 

 We carried out a Monte Carlo simulation study on the adsorption of weak polyelectrolyte 

on strong charged substrate. Both the polyelectrolyte and the substrate are represented by simple 

models, which focus in the electrostatic interaction between the charged monomers and charged 

particles in the substrate.  

In our Monte Carlo simulations, we observe the appearance of a maximum value in the 

adsorbed amount of chains vs. pH curves in certain conditions. The adsorption maximum is 

localized at a pH-value close to the intrinsic p��� = 4.25 value of the PE titratable groups, and 

~1.5 pH units below of the half-ionization p��-value of chains p��®¯���.5 ≈ 5.6. This maximum 

was experimentally reported and theoretically previously studied, and it was found to be located 

at ~1 pH unit below the intrinsic dissociation constant of the carboxylic groups of the 

macromolecules.[45] Regardless the maximum exact location (which may be given by the 

definition of the intrinsic p���), it is important to note that the charged monomer adsorbed 

amount does not exhibit any maximum in any circumstance.  

In addition, we observe a complex behavior in the PE degree of dissociation of the chains 

adsorbed on the surface. The PE degree of dissociation has been found to change depending on 

the coverage degree of PE chains on the surface. Those changes are analyzed in detail calculating 

the apparent dissociation constant p�����, which show interesting trends depending on the pH-

value and the number of PE chains. This is because for high coverage degrees the inter-chain 

lateral interaction becomes significant. These novel results for the adsorbed weak PE chains on 
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planar charged surface show that the apparent dissociation p����� of the adsorbed chains is 

significantly affected by the inter-chain lateral interaction.   

We also observed that the PE amount of negative charge increase caused in increasing the 

pH-value is accompanied by a decrease in the small anion adsorbed amount and an increase in 

the small cation adsorbed amount. This ionic exchange at high pH-values allows us to observe 

the charge reversion phenomenon in surface caused by the PE chains adsorption. 

   Up to our knowledge, this is the first time that this phenomenon is reproduced by means 

of computational simulation. We want to highlight that we do not include non-electrostatic 

interaction between the system particles in our simulations. This means that the abovementioned 

conclusions are a natural consequence of the columbic interaction of the system species and the 

acid/base equilibria.  The immediate perspective of this work is to study the effect of 1:1 

monovalent salt concentration. In turn, it would be very interesting to study the adsorption of 

weak polyelectrolytes in the presence of salt with a divalent cation or a divalent anion, that is, the 

effect of using type 1:2 and 2:1 salts. Another interesting perspective is to study the effect of 

charge discreteness on the adsorption of polyelectrolytes, which have been found to be relevant 

on finite-area adsorbing surfaces like Janus particles.[60] In turn, it would be also relevant to 

study the effect of different charge distributions on the surface. 
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Highlights 

Weak polyelectrolyte adsorption on a strong cationic surface is studied using constant 

pH Monte Carlo simulation 

The adsorbed amount as a function of pH shows a maximum value close to the intrinsic 

p��-value of the titratable groups of the polyelectrolyte 

 

The apparent p��-value of the adsorbed polyelectrolyte titratable groups exhibits a 

nontrivial behavior as a function of the pH-value and the coverage degree  

 

Charge reversion of the system is obtained at pH-values beyond the intrinsic p��-value 

of the polyelectrolyte titratable groups 
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