180 research outputs found
Recommended from our members
Studies on the mechanism of processing and presentation of insulin by antigen presenting cells
British Torture in the 'War on Terror'
Despite longstanding allegations of UK involvement in prisoner abuse during counterterrorism operations as part of the US-led âwar on terrorâ, a consistent narrative emanating from British government officials is that Britain neither uses, condones nor facilitates torture or other cruel, inhuman, degrading treatment and punishment. We argue that such denials are untenable. We have established beyond reasonable doubt that Britain has been deeply involved in post-9/11 prisoner abuse, and we can now provide the most detailed account to date of the depth of this involvement. We argue that it is possible to identify a peculiarly British approach to torture in the âwar on terrorâ, which is particularly well-suited to sustaining a narrative of denial. To explain the nature of UK involvement, we argue that it can be best understood within the context of how law and sovereign power have come to operate during the âwar on terrorâ. We turn here to the work of Judith Butler, and explore the role of Britain as a âpetty sovereignâ, operating under the state of exception established by the US Executive. UK authorities have not themselves suspended the rule of law so overtly, and indeed have repeatedly insisted on their commitment to it. They have nevertheless been able to construct a rhetorical, legal and policy âscaffoldâ that has enabled them to demonstrate at least procedural adherence to human rights norms, while at the same time allowing UK officials to acquiesce in the arbitrary exercise of sovereignty over individuals who are denied any access to appropriate representation or redress in compliance with the rule of law
Epilepsy Caused by an Abnormal Alternative Splicing with Dosage Effect of the SV2A Gene in a Chicken Model
Photosensitive reflex epilepsy is caused by the combination of an individual's enhanced sensitivity with relevant light stimuli, such as stroboscopic lights or video games. This is the most common reflex epilepsy in humans; it is characterized by the photoparoxysmal response, which is an abnormal electroencephalographic reaction, and seizures triggered by intermittent light stimulation. Here, by using genetic mapping, sequencing and functional analyses, we report that a mutation in the acceptor site of the second intron of SV2A (the gene encoding synaptic vesicle glycoprotein 2A) is causing photosensitive reflex epilepsy in a unique vertebrate model, the Fepi chicken strain, a spontaneous model where the neurological disorder is inherited as an autosomal recessive mutation. This mutation causes an aberrant splicing event and significantly reduces the level of SV2A mRNA in homozygous carriers. Levetiracetam, a second generation antiepileptic drug, is known to bind SV2A, and SV2A knock-out mice develop seizures soon after birth and usually die within three weeks. The Fepi chicken survives to adulthood and responds to levetiracetam, suggesting that the low-level expression of SV2A in these animals is sufficient to allow survival, but does not protect against seizures. Thus, the Fepi chicken model shows that the role of the SV2A pathway in the brain is conserved between birds and mammals, in spite of a large phylogenetic distance. The Fepi model appears particularly useful for further studies of physiopathology of reflex epilepsy, in comparison with induced models of epilepsy in rodents. Consequently, SV2A is a very attractive candidate gene for analysis in the context of both mono- and polygenic generalized epilepsies in humans
Recognition of Human Proinsulin Leader Sequence by Class IâRestricted T-Cells in HLA-A*0201 Transgenic Mice and in Human Type 1 Diabetes
OBJECTIVEâ A restricted region of proinsulin located in the B chain and adjacent region of C-peptide has been shown to contain numerous candidate epitopes recognized by CD8+ T-cells. Our objective is to characterize HLA class Iârestricted epitopes located within the preproinsulin leader sequence
RelB-Dependent Stromal Cells Promote T-Cell Leukemogenesis
BACKGROUND: The Rel/NF-kappaB transcription factors are often activated in solid or hematological malignancies. In most cases, NF-kappaB activation is found in malignant cells and results from activation of the canonical NF-kappaB pathway, leading to RelA and/or c-Rel activation. Recently, NF-kappaB activity in inflammatory cells infiltrating solid tumors has been shown to contribute to solid tumor initiation and progression. Noncanonical NF-kappaB activation, which leads to RelB activation, has also been reported in breast carcinoma, prostate cancer, and lymphoid leukemia. METHODOLOGY/PRINCIPAL FINDINGS: Here we report a novel role for RelB in stromal cells that promote T-cell leukemogenesis. RelB deficiency delayed leukemia onset in the TEL-JAK2 transgenic mouse model of human T acute lymphoblastic leukemia. Bone marrow chimeric mouse experiments showed that RelB is not required in the hematopoietic compartment. In contrast, RelB plays a role in radio-resistant stromal cells to accelerate leukemia onset and increase disease severity. CONCLUSIONS/SIGNIFICANCE: The present results are the first to uncover a role for RelB in the crosstalk between non-hematopoietic stromal cells and leukemic cells. Thus, besides its previously reported role intrinsic to specific cancer cells, the noncanonical NF-kappaB pathway may also play a pro-oncogenic role in cancer microenvironmental cells
- âŠ