18 research outputs found

    Development of an Optical Slice for an RF and Optical Software Defined Radio

    Get PDF
    A key component in the Integrated Radio and Optical Communications project at the National Aeronautics and Space Administration's (NASA) Glenn Research Center (GRC) is the radio frequency (RF) and optical software defined radio (SDR). A NASA RF SDR might consist of a general purpose processor to run the Space Telecommunications Radio System (STRS) Architecture for radio command and control, a reconfigurable signal processing device such as a field programmable gate array (FPGA) which houses the waveform, and a digital to analog converter (DAC) for transmitting data. Prior to development, SDR architecture trades on how to combine the RF and optical elements were studied. A modular architecture with physically separate RF and optical hardware slices was chosen and the optical slice of an SDR was designed and developed. The Harris AppSTARTM platform, which consists of an FPGA processing platform with a mezzanine card targeted for RF communications, was used as the base platform in prototyping the optical slice. A serially concatenated pulse position modulation (SCPPM) optical waveform was developed. The waveform follows the standard described in the Consultative Committee for Space Data Systems (CCSDS) Optical Communications Coding and Synchronization Red Book. A custom optical mezzanine printed circuit board card was developed at NASA GRC for optical transmission. The optical mezzanine card replaces the DAC, which is used in the transmission of RF signals. This paper describes RF and optical SDR architecture trades, the Harris AppSTAR platform, the design of the SCPPM waveform, and the development of the optical mezzanine card

    GD SDR Automatic Gain Control Characterization Testing

    Get PDF
    The General Dynamics (GD) S-Band software defined radio (SDR) in the Space Communications and Navigation (SCAN) Testbed on the International Space Station (ISS) will provide experimenters an opportunity to develop and demonstrate experimental waveforms in space. The GD SDR platform and initial waveform were characterized on the ground before launch and the data will be compared to the data that will be collected during on-orbit operations. A desired function of the SDR is to estimate the received signal to noise ratio (SNR), which would enable experimenters to better determine on-orbit link conditions. The GD SDR does not have an SNR estimator, but it does have an analog and a digital automatic gain control (AGC). The AGCs can be used to estimate the SDR input power which can be converted into a SNR. Tests were conducted to characterize the AGC response to changes in SDR input power and temperature. This purpose of this paper is to describe the tests that were conducted, discuss the results showi ng how the AGCs relate to the SDR input power, and provide recommendations for AGC testing and characterization

    Development of an Optical Slice for an RF and Optical Software Defined Radio

    Get PDF
    A key component in the Integrated Radio and Optical Communications project at the National Aeronautics and Space Administration's (NASA) Glenn Research Center (GRC) is the radio frequency (RF) and optical software defined radio (SDR). A NASA RF SDR might consist of a general purpose processor to run the Space Telecommunications Radio System (STRS) Architecture for radio command and control, a reconfigurable signal processing device such as a field programmable gate array (FPGA) which houses the waveform, and a digital to analog converter for (DAC) transmitting data. Prior to development, SDR architecture trades on how to combine the RF and optical elements were studied. A modular architecture with physically separate RF and optical hardware slices was chosen and the optical slice of an SDR was designed and developed. The Harris AppSTAR("TM") platform, which consists of an FPGA processing platform with a mezzanine card targeted for RF communications, was used as the base platform in prototyping the optical slice. A serially concatenated pulse position modulation (SCPPM) optical waveform was developed. The waveform follows the standard described in the Consultative Committee for Space Data Systems (CCSDS) Optical Communions Coding and Synchronization Red Book. A custom optical mezzanine printed circuit board card was developed at NASA GRC for optical transmission. The optical mezzanine card replaces the DAC, which is used in the transmission of RF signals. This paper describes RF and optical SDR architecture trades, the Harris AppSTAR("TM") platform, the design of the SCPPM waveform, and the development of the optical mezzanine card

    SDR Input Power Estimation Algorithms

    Get PDF
    The General Dynamics (GD) S-Band software defined radio (SDR) in the Space Communications and Navigation (SCAN) Testbed on the International Space Station (ISS) provides experimenters an opportunity to develop and demonstrate experimental waveforms in space. The SDR has an analog and a digital automatic gain control (AGC) and the response of the AGCs to changes in SDR input power and temperature was characterized prior to the launch and installation of the SCAN Testbed on the ISS. The AGCs were used to estimate the SDR input power and SNR of the received signal and the characterization results showed a nonlinear response to SDR input power and temperature. In order to estimate the SDR input from the AGCs, three algorithms were developed and implemented on the ground software of the SCAN Testbed. The algorithms include a linear straight line estimator, which used the digital AGC and the temperature to estimate the SDR input power over a narrower section of the SDR input power range. There is a linear adaptive filter algorithm that uses both AGCs and the temperature to estimate the SDR input power over a wide input power range. Finally, an algorithm that uses neural networks was designed to estimate the input power over a wide range. This paper describes the algorithms in detail and their associated performance in estimating the SDR input power

    Real Time Photon-Counting Receiver for High Photon Efficiency Optical Communications

    Get PDF
    We present a scalable design for a photon-counting ground receiver based on superconducting nanowire single photon detectors (SNSPDs) and field programmable gate array (FPGA) real-time processing for applications to space-to-ground photon starved links, such as the Orion EM-2 Optical Communication Demonstration (O2O), and future deep space or low transmitter power missions. The receiver is designed to receive a serially concatenated pulse position modulation (SCPPM) waveform, which follows the Consultative Committee for Space Data Systems (CCSDS) Optical Communications Coding and Synchronization Red Book standard. The receiver design uses multiple individually fiber coupled, 80% detection efficiency commercial SNSPDs in parallel to scale to a required data rate, and is capable of achieving data rates up to 528 Mbps. For efficient fiber coupling from the telescope to the array of parallel detectors that can be scaled both to telescope aperture size and the number of detectors, we use either a single mode fiber (SMF) photonic lantern or a few-mode fiber (FMF) photonic lantern. In this paper we give an overview of the receiver system design, the characteristics of the photonic lanterns, the performance of the SNSPDs, and system level tests. We show that 40 Mbps can be received using a single SNSPD, and discuss aspects for scaling to higher data rates

    Unique Challenges Testing SDRs for Space

    Get PDF
    This paper describes the approach used by the Space Communication and Navigation (SCaN) Testbed team to qualify three Software Defined Radios (SDR) for operation in space and the characterization of the platform to enable upgrades on-orbit. The three SDRs represent a significant portion of the new technologies being studied on board the SCAN Testbed, which is operating on an external truss on the International Space Station (ISS). The SCaN Testbed provides experimenters an opportunity to develop and demonstrate experimental waveforms and applications for communication, networking, and navigation concepts and advance the understanding of developing and operating SDRs in space. Qualifying a Software Defined Radio for the space environment requires additional consideration versus a hardware radio. Tests that incorporate characterization of the platform to provide information necessary for future waveforms, which might exercise extended capabilities of the hardware, are needed. The development life cycle for the radio follows the software development life cycle, where changes can be incorporated at various stages of development and test. It also enables flexibility to be added with minor additional effort. Although this provides tremendous advantages, managing the complexity inherent in a software implementation requires a testing beyond the traditional hardware radio test plan. Due to schedule and resource limitations and parallel development activities, the subsystem testing of the SDRs at the vendor sites was primarily limited to typical fixed transceiver type of testing. NASA s Glenn Research Center (GRC) was responsible for the integration and testing of the SDRs into the SCaN Testbed system and conducting the investigation of the SDR to advance the technology to be accepted by missions. This paper will describe the unique tests that were conducted at both the subsystem and system level, including environmental testing, and present results. For example, test waveforms were developed to measure the gain of the transmit system across the tunable frequency band. These were used during thermal vacuum testing to enable characterization of the integrated system in the wide operational temperature range of space. Receive power indicators were used for Electromagnetic Interference tests (EMI) to understand the platform s susceptibility to external interferers independent of the waveform. Additional approaches and lessons learned during the SCaN Testbed subsystem and system level testing will be discussed that may help future SDR integrator

    Performance and Characterization of a Modular Superconducting Nanowire Single Photon Detector System for Space-to-Earth Optical Communications Links

    Get PDF
    Space-to-ground photon-counting optical communication links supporting high data rates over large distances require enhanced ground receiver sensitivity in order to reduce the mass and power burden on the spacecraft transmitter. Superconducting nanowire single-photon detectors (SNSPDs) have been demonstrated to offer superior performance in detection efficiency, timing resolution, and count rates over semiconductor photodetectors, and are a suitable technology for high photon efficiency links. Recently photon detectors based on superconducting nanowires have become commercially available, and we have assessed the characteristics and performance of one such commercial system as a candidate for potential utilization in ground receiver designs. The SNSPD system features independent channels which can be added modularly, and we analyze the scalability of the system to support different data rates, as well as consider coupling concepts and issues as the number of channels increases

    Few-Mode Fiber Coupled Superconducting Nanowire Single-Photon Detectors for Photon Efficient Optical Communications

    Get PDF
    The NASA Glenn Research Center's development of a high-photon efficiency real-time optical communications ground receiver has added superconducting nanowire single-photon detectors (SNSPDs) coupled with few-mode fibers (FMF). High data rate space-to-ground optical communication links require enhanced ground receiver sensitivity to reduce spacecraft transmitter constraints, and therefore require highly efficient coupling from fiber to detector. In the presence of atmospheric turbulence the received optical wave front can be severely distorted introducing higher-order spatial mode components to the received signal. To reduce mode filtering and mismatch loss and the resulting degradations to detector coupling efficiency, we explore the use of few-mode fiber coupling to commercial single-pixel SNSPDs. Graded index 20-m few-mode fibers allow the commercial single pixel SNSPD's active area to couple with equal efficiency as single mode fibers. Here we determine detector characteristics such as count rate, detection efficiency, dark counts, and jitter, as well as detection efficiencies for higher-order fiber spatial modes. Additionally, we assess the laboratory performance of the detectors in an optical system which emulates future deep space optical communications links

    Characterization of a Photon Counting Test Bed for Space to Ground Optical Pulse Position Modulation Communications Links

    Get PDF
    The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) has developed a laboratory transmitter and receiver prototype of a space-to-ground optical communications link. The system is meant to emulate future deep space optical communication links, such as the first crewed flight of Orion, in which the transmitted laser is modulated using pulse position modulation and the receiver is capable of detecting single photons. The transmitter prototype consists of a software defined radio, a high extinction ratio electro-optic modulator system, and a 1550 nm laser. The receiver is a scalable concept and utilizes a single-pixel array of fiber coupled superconducting nanowire single photon detectors. The transmit and receive waveforms follow the Consultative Committee for Space Data Systems (CCSDS) Optical Communications Coding and Synchronization Standard. A software model of the optical transmitter and receiver has also been implemented to predict performance of the optical test bed. This paper describes the transmitter and receiver prototypes as well as the system test configuration. System level tests results are presented and shown to align with predictions from software simulations. The validated software model can be used to in the future to reduce the design cycle of optical communications systems

    Optical Software Defined Radio Transmitter Extinction Ratio Enhancement with Differential Pulse Carving

    Get PDF
    A unique challenge in the development of a deep space optical software defined radio (SDR) transmitter is the optimization of the extinction ratio (ER). For a Mars to Earth optical link, an ER approaching 40dB may be necessary. However, a high ER can be difficult to achieve at the low PPM orders and narrow slot widths required for high data rates. The quality of the digital signal transmitted by the SDR does not meet the amplitude and timing characteristics needed by an analog optical modulator. The conflicting implementation constraints of these two fundamentally different systems, the digital SDR and analog optical modulator, can make achieving the required ER very difficult. In this paper, the causes of fidelity loss at the interface between the SDR and optical modulator are discussed. The SDR signal quality requirements are derived and explored. It is shown that increasing the SDR signal quality enough to meet these requirements is impractical to implement due to bandwidth limitations of electronic components as well as Field Programmable Gate Array (FPGA) clock speed constraints. A novel optical modulation architecture based on low-voltage differential signaling and dual Mach-Zehnder modulators is presented which reduces the signal quality requirements on the SDR and increases the system ER
    corecore