112 research outputs found

    Cyclin D1 activation through ATF-2 in Reg-induced pancreatic β-cell regeneration

    Get PDF
    AbstractRegenerating gene product (Reg) is induced in pancreatic β-cells and acts as an autocrine/paracrine growth factor for regeneration via a cell surface Reg receptor. However, the manner by which Reg induces β-cell regeneration was unknown. In the present study, we found that Reg increased phospho-ATF-2, which binds to −57 to −52 of the cyclin D1 gene to activate the promoter. The Reg/ATF-2-induced cyclin D1 promoter activation was attenuated by PI(3)K inhibitors such as LY294002 and wortmannin. In Reg knockout mouse islets, the levels of phospho-ATF-2, cyclin D1, and phospho-Rb were greatly decreased. These results indicate that the Reg–Reg receptor system stimulates the PI(3)K/ATF-2/cyclin D1 signaling pathway to induce β-cell regeneration

    Chemiluminescence assay for quinones based on generation of reactive oxygen species through the redox cycle of quinone.

    Get PDF
    A sensitive and selective chemiluminescence assay for the determination of quinones was developed. The method was based on generation of reactive oxygen species through the redox reaction between quinone and dithiothreitol as reductant, and then the generated reactive oxygen was detected by luminol chemiluminescence. The chemiluminescence was intense, long-lived, and proportional to quinone concentration. It is concluded that superoxide anion was involved in the proposed chemiluminescence reaction because the chemiluminescence intensity was decreased only in the presence of superoxide dismutase. Among the tested quinones, the chemiluminescence was observed from 9,10-phenanthrenequinone, 1,2-naphthoquinone, and 1,4-naphthoquinone, whereas it was not observed from 9,10-anthraquinone and 1,4-benzoquinone. The chemiluminescence property was greatly different according to the structure of quinones. The chemiluminescence was also observed for biologically important quinones such as ubiquinone. Therefore, a simple and rapid assay for ubiquinone in pharmaceutical preparation was developed based on the proposed chemiluminescence reaction. The detection limit (blank + 3SD) of ubiquinone was 0.05 microM (9 ng/assay) with an analysis time of 30 s per sample. The developed assay allowed the direct determination of ubiquinone in pharmaceutical preparation without any purification procedure

    On the origin and evolution of the asteroid Ryugu: A comprehensive geochemical perspective

    Get PDF
    Presented here are the observations and interpretations from a comprehensive analysis of 16 representative particles returned from the C-type asteroid Ryugu by the Hayabusa2 mission. On average Ryugu particles consist of 50% phyllosilicate matrix, 41% porosity and 9% minor phases, including organic matter. The abundances of 70 elements from the particles are in close agreement with those of CI chondrites. Bulk Ryugu particles show higher δ18O, Δ17O, and ε54Cr values than CI chondrites. As such, Ryugu sampled the most primitive and least-thermally processed protosolar nebula reservoirs. Such a finding is consistent with multi-scale H-C-N isotopic compositions that are compatible with an origin for Ryugu organic matter within both the protosolar nebula and the interstellar medium. The analytical data obtained here, suggests that complex soluble organic matter formed during aqueous alteration on the Ryugu progenitor planetesimal (several 10’s of km), <2.6 Myr after CAI formation. Subsequently, the Ryugu progenitor planetesimal was fragmented and evolved into the current asteroid Ryugu through sublimation

    A dehydrated space-weathered skin cloaking the hydrated interior of Ryugu

    Get PDF
    Without a protective atmosphere, space-exposed surfaces of airless Solar System bodies gradually experience an alteration in composition, structure and optical properties through a collective process called space weathering. The return of samples from near-Earth asteroid (162173) Ryugu by Hayabusa2 provides the first opportunity for laboratory study of space-weathering signatures on the most abundant type of inner solar system body: a C-type asteroid, composed of materials largely unchanged since the formation of the Solar System. Weathered Ryugu grains show areas of surface amorphization and partial melting of phyllosilicates, in which reduction from Fe3+ to Fe2+ and dehydration developed. Space weathering probably contributed to dehydration by dehydroxylation of Ryugu surface phyllosilicates that had already lost interlayer water molecules and to weakening of the 2.7 µm hydroxyl (–OH) band in reflectance spectra. For C-type asteroids in general, this indicates that a weak 2.7 µm band can signify space-weathering-induced surface dehydration, rather than bulk volatile loss

    Oxa-TriQuinoline: A New Entry to Aza-Oxa-Crown Architectures

    No full text
    A new 15-membered-macrocyclic molecular entity, oxa-TriQuinoline (o-TQ), was designed and synthesized. In o-TQ, three oxygen atoms were joined onto three quinoline units at the 2- and 8-positions in a head-to-tail fashion via three-fold SNAr reactions, giving rise to the characteristic N3O3 aza-oxa-crown architecture. o-TQ can serve as a new tridentate nitrogen ligand to capture a Cu(I) cation and adopt a bowl shape, before supramolecular complexation with corannulene and [12]CPP occurs via π–π and CH–π interactions. In the presence of the Cu(I) cation, the non-emissive o-TQ becomes a highly emissive material in the solid state, whereby the emission wave-lengths depend on the ancillary ligand on the Cu(I) cation. The o-TQ/Cu(I) complex is able to promote carbene catalysis to provide a range of enamines with a gem-difluorinated terminus

    A Thirst for Enantioselectivity in Catalytic Addition of Alkylnitriles

    No full text

    TEtraQuinolines (TEQs): A missing link in the family of porphyrinoid macrocycles

    No full text
    Porphyrin contains four inwardly oriented nitrogen atoms. It is arguably the most ubiquitous multifunctional naturally occurring macrocycle that has inspired the design of novel nitrogen-containing heterocycles for decades. While cyclic tetramers of pyrrole, indole, and pyridine have been exploited as macrocycles in this category, quinoline has been largely neglected as a synthon. Herein, we report the synthesis of TEtraQuinoline (TEQ) as a ‘missing link’ in this N4 macrocycle family. In TEQs, four quinoline units are concatenated to produce an S4-symmetric architecture. TEQs are characterized by a highly rigid saddle shape, wherein the lone-pair orbitals of the four nitrogen atoms are not aligned in a planar fashion. Nevertheless, TEQs can coordinate a series of transition-metal cations. TEQs are inherently fluorescence-silent, but become strongly emissive upon protonation or complexation of Zn(II) cations ( = 0.71). TEQ/Fe(II) complexes can catalyse dehydrogenation and oxygenation reactions with catalyst loadings as low as 0.1 mol%
    corecore