25 research outputs found

    Circulation and characterization of seasonal influenza viruses in Cambodia, 2012‐2015

    Get PDF
    Background: Influenza virus circulation is monitored through the Cambodian influenza‐like illness (ILI) sentinel surveillance system and isolates are characterized by the National Influenza Centre (NIC). Seasonal influenza circulation has previously been characterized by year‐round activity and a peak during the rainy season (June‐November). Objectives: We documented the circulation of seasonal influenza in Cambodia for 2012‐2015 and investigated genetic, antigenic, and antiviral resistance characteristics of influenza isolates. Patients/Methods Respiratory samples were collected from patients presenting with influenza‐like illness (ILI) at 11 hospitals throughout Cambodia. First‐line screening was conducted by the National Institute of Public Health and the Armed Forces Research Institute of Medical Sciences. Confirmation of testing and genetic, antigenic and antiviral resistance characterization was conducted by Institute Pasteur in Cambodia, the NIC. Additional virus characterization was conducted by the WHO Collaborating Centre for Reference and Research on Influenza (Melbourne, Australia). Results: Between 2012 and 2015, 1,238 influenza‐positive samples were submitted to the NIC. Influenza A(H3N2) (55.3%) was the dominant subtype, followed by influenza B (30.9%; predominantly B/Yamagata‐lineage) and A(H1N1)pdm09 (13.9%). Circulation of influenza viruses began earlier in 2014 and 2015 than previously described, coincident with the emergence of A(H3N2) clades 3C.2a and 3C.3a, respectively. There was high diversity in the antigenicity of A(H3N2) viruses, and to a smaller extent influenza B viruses, during this period, with some mismatches with the northern and southern hemisphere vaccine formulations. All isolates tested were susceptible to the influenza antiviral drugs oseltamivir and zanamivir. Conclusions: Seasonal and year‐round co‐circulation of multiple influenza types/subtypes were detected in Cambodia during 2012‐2015

    Epidemiological and virological characteristics of influenza viruses circulating in Cambodia from 2009 to 2011

    Get PDF
    Background: The Cambodian National Influenza Center (NIC) monitored and characterized circulating influenza strains from 2009 to 2011. Methodology/Principal Findings: Sentinel and study sites collected nasopharyngeal specimens for diagnostic detection, virus isolation, antigenic characterization, sequencing and antiviral susceptibility analysis from patients who fulfilled case definitions for influenza-like illness, acute lower respiratory infections and event-based surveillance. Each year in Cambodia, influenza viruses were detected mainly from June to November, during the rainy season. Antigenic analysis show that A/H1N1pdm09 isolates belonged to the A/California/7/2009-like group. Circulating A/H3N2 strains were A/Brisbane/10/2007-like in 2009 before drifting to A/Perth/16/2009-like in 2010 and 2011. The Cambodian influenza B isolates from 2009 to 2011 all belonged to the B/Victoria lineage represented by the vaccine strains B/Brisbane/60/2008 and B/Malaysia/2506/2004. Sequences of the M2 gene obtained from representative 2009–2011 A/H3N2 and A/H1N1pdm09 strains all contained the S31N mutation associated with adamantanes resistance except for one A/H1N1pdm09 strain isolated in 2011 that lacked this mutation. No reduction in the susceptibility to neuraminidase inhibitors was observed among the influenza viruses circulating from 2009 to 2011. Phylogenetic analysis revealed that A/H3N2 strains clustered each year to a distinct group while most A/H1N1pdm09 isolates belonged to the S203T clade. Conclusions/Significance: In Cambodia, from 2009 to 2011, influenza activity occurred throughout the year with peak seasonality during the rainy season from June to November. Seasonal influenza epidemics were due to multiple genetically distinct viruses, even though all of the isolates were antigenically similar to the reference vaccine strains. The drug susceptibility profile of Cambodian influenza strains revealed that neuraminidase inhibitors would be the drug of choice for influenza treatment and chemoprophylaxis in Cambodia, as adamantanes are no longer expected to be effective

    A Historical Perspective of Influenza A(H1N2) Virus

    Get PDF
    The emergence and transition to pandemic status of the influenza A(H1N1)A(H1N1)pdm09) virus in 2009 illustrated the potential for previously circulating human viruses to re-emerge in humans and cause a pandemic after decades of circulating among animals. Within a short time of the initial emergence of A(H1N1)pdm09 virus, novel reassortants were isolated from swine. In late 2011, a variant (v) H3N2 subtype was isolated from humans, and by 2012, the number of persons infected began to increase with limited person-to-person transmission. During 2012 in the United States, an A(H1N2)v virus was transmitted to humans from swine. During the same year, Australia recorded its first H1N2 subtype infection among swine. The A(H3N2)v and A(H1N2)v viruses contained the matrix protein from the A(H1N1)pdm09 virus, raising the possibility of increased transmissibility among humans and underscoring the potential for influenza pandemics of novel swine-origin viruses. We report on the differing histories of A(H1N2) viruses among humans and animals

    Influenza vaccine effectiveness during the 2012 influenza season in Victoria, Australia: Influences of waning immunity and vaccine match

    No full text
    Vaccine effectiveness may wane with increasing time since vaccination. This analysis used the Victorian sentinel general practitioner (GP) network to estimate vaccine effectiveness for trivalent inactivated vaccines in the 2012 season. A test-negative design was used where patients presenting to GPs with influenza-like illness who tested positive for influenza were cases and noncases were those who tested negative. Vaccination status was recorded by GPs. Vaccine effectiveness was calculated as (1-odds ratio)×100%. Estimates were compared early versus late in the season and by time since vaccination. Virus isolates were assessed antigenically by hemagglutination inhibition assay in a selection of positive samples and viruses from healthy adults who experienced a vaccine breakthrough were analyzed genetically. The adjusted vaccine effectiveness estimate for any type of influenza was 45% (95% CI: 8,66) and for influenza A(H3) was 35% (95% CI: -11,62). A non-significant effect of waning effectiveness by time since vaccination was observed for A(H3). For those vaccinated <93 days of presentation vaccine effectiveness was 37% (95% CI: -29,69), while for those vaccinated ≥93 days before presentation it was 18% (95% CI: -83,63). Comparison of early versus late in the season estimates was very sensitive to the cut off week chosen for analysis. Antigenic data suggested that low vaccine effectiveness was not associated with poor vaccine match among the A(H3) viruses. However, genetic analysis suggested nucleotide substitutions in antigenic sites. In 2012, the trivalent influenza vaccine provided moderate protection against influenza and showed limited evidence for waning effectiveness. Antigenic and genetic data can provide additional insight into understanding these estimates

    Acute emergence and reversion of influenza A virus quasispecies within CD8+ T cell antigenic peptides

    No full text
    Influenza A virus-specific CD8 + cytotoxic T lymphocytes (CTLs) provide a degree of cross-strain protection that is potentially subverted by mutation. Here we describe the sequential emergence of such variants within CTL epitopes for a persistently infected, immunocompromised infant. Further analysis in immunodeficient and wild-type mice supports the view that CTL escape variants arise frequently in influenza, accumulate with time and revert in the absence of immune pressure under MHCI-mismatched conditions. Viral fitness, the abundance of endogenous CD8 + T cell responses and T cell receptor repertoire diversity influence the nature of these de novo mutants. Structural characterization of dominant escape variants shows how the peptide-MHCI interaction is modified to affect variant-MHCI stability. The mechanism of influenza virus escape thus looks comparable to that recognized for chronic RNA viruses like HIV and HCV, suggesting that immunocompromised patients with prolonged viral infection could have an important part in the emergence of influenza quasispecies
    corecore