159 research outputs found

    Dicer Functions in Aquatic Species

    Get PDF
    Dicer is an RNase III enzyme with two catalytic subunits, which catalyzes the cleavage of double-stranded RNA to small interfering RNAs and micro-RNAs, which are mainly involved in invasive nucleic acid defense and endogenous genes regulation. Dicer is abundantly expressed in embryos, indicating the importance of the protein in early embryonic development. In addition, Dicer is thought to be involved in defense mechanism against foreign nucleic acids such as viruses. This paper will mainly focus on the recent progress of Dicer-related research and discuss potential RNA interference pathways in aquatic species

    Evaluation of fat-free mass by whole-body counter in Japanese healthy young adults

    Get PDF
    Whole-body counters (WBCs) are special instruments for measuring internal irradiation doses and are usually housed within or around nuclear facilities in the event of unexpected radiation emergencies. As a substantial proportion of total body potassium (TBK) is found in fat-free mass (FFM), FFM volume can be predicted from WBC-measured 40K. We screened TBK in Japanese healthy young adults using a WBC and found strong linear correlations between TBK and lean body mass (LBM) and body mass index (r = 0.97, P < 0.01 and r = 0.47, P < 0.01, respectively). Multiple linear regression analysis, following adjustments for sex, indicates that only LBM has a significant correlation with TBK (P < 0.01). These results strongly support the feasibility of using WBCs for estimating FF

    gamma 375W fibrinogen-synthesizing CHO cells indicate the accumulation of variant fibrinogen within endoplasmic reticulum

    Get PDF
    Background: Hepatic endoplasmic reticulum (ER) storage disease (HERSD) associated with hypofibrinogenemia has been reported in patients with four types of heterozygous gamma-chain variant fibrinogen in the C terminal region. Of interest, substitution of gamma R375W induced hypofibrinogenemia and HERSD, whereas gamma R375G induced dysfibrinogenemia. Objectives: To analyze the synthesis of variant fibrinogen and morphological characteristics, we established variant fibrinogen-producing cells and compared them with wild-type fibrinogen-synthesizing cells. Methods: The fibrinogen gamma-chain expression vectors coding gamma 375W and gamma 375G were altered by oligonucleotide-directed mutagenesis and transfected into Chinese hamster ovary (CHO) cells. Synthesis of fibrinogen (media and cell lysates) was measured by ELISA for each cloned cell line and morphological characteristics were observed by immunofluorescence and transmission electron microscopy. Results: The medium/cell lysate fibrinogen ratio of gamma 375W-CHO cells was markedly lower than that of the normal cells and gamma 375G-CHO cells. Immunostaining with anti-fibrinogen antibody showed only gamma 375W-CHO cells, but revealed two types of cells containing cytoplasmic inclusion bodies, scattered large-granular bodies and fibrous forms. Observation by confocal microscopy indicated that both inclusion bodies were colocalized with fibrinogen and ER-membrane protein; furthermore, transmission electron microscopic observation demonstrated dilatation of the ER by large-granular inclusion bodies and fibrous forms filled with regularly structured fibular materials within the dilated ER. Conclusion: These results demonstrated that assembled and non-secreted gamma 375W fibrinogen was accumulated in the dilated ER and aggregated variant fibrinogen was seen as regularly structured fibular materials, which was similar to the fingerprint-like pattern observed at inclusion bodies in patients' hepatocytes affected with HERSD.ArticleTHROMBOSIS RESEARCH. 133(1):101-107 (2014)journal articl

    The fibrous form of intracellular inclusion bodies in recombinant variant fibrinogen-producing cells is specific to the hepatic fibrinogen storage disease-inducible variant fibrinogen

    Get PDF
    Fibrinogen storage disease (FSD) is a rare disorder that is characterized by the accumulation of fibrinogen in hepatocytes and induces liver injury. Six mutations in the γC domain (γG284R, γT314P, γD316N, the deletion of γG346-Q350, γG366S, and γR375W) have been identified for FSD. Our group previously established γ375W fibrinogen-producing Chinese hamster ovary (CHO) cells and observed aberrant large granular and fibrous forms of intracellular inclusion bodies. The aim of this study was to investigate whether fibrous intracellular inclusion bodies are specific to FSD-inducible variant fibrinogen. Thirteen expression vectors encoding the variant γ-chain were stably or transiently transfected into CHO cells expressing normal fibrinogen Aα- and Bβ-chains or HuH-7 cells, which were then immunofluorescently stained. Six CHO and HuH-7 cell lines that transiently produced FSD-inducible variant fibrinogen presented the fibrous (3.2?22.7 and 2.1?24.5%, respectively) and large granular (5.4?25.5 and 7.7?23.9%) forms of intracellular inclusion bodies. Seven CHO and HuH-7 cell lines that transiently produced FSD-non-inducible variant fibrinogen only exhibit the large granular form. These results demonstrate that transiently transfected variant fibrinogen-producing CHO cells and inclusion bodies of the fibrous form may be useful in non-invasive screening for FSD risk factors for FSD before its onset.ArticleINTERNATIONAL JOURNAL OF HEMATOLOGY.105:758-768(2017)journal articl

    Induction of Tumor-specific T Cell Immunity by Anti-DR5 Antibody Therapy

    Get PDF
    Because tumor necrosis factor–related apoptosis-inducing ligand (TRAIL) preferentially induces apoptosis in tumor cells and plays a critical role in tumor surveillance, its receptor is an attractive target for antibody-mediated tumor therapy. Here we report that a monoclonal antibody (mAb) against the mouse TRAIL receptor, DR5, exhibited potent antitumor effects against TRAIL-sensitive tumor cells in vivo by recruiting Fc receptor–expressing innate immune cells, with no apparent systemic toxicity. Administration of the agonistic anti-DR5 mAb also significantly inhibited experimental and spontaneous tumor metastases. Notably, the anti-DR5 mAb-mediated tumor rejection by innate immune cells efficiently evoked tumor-specific T cell immunity that could also eradicate TRAIL-resistant variants. These results suggested that the antibody-based therapy targeting DR5 is an efficient strategy not only to eliminate TRAIL-sensitive tumor cells, but also to induce tumor-specific T cell memory that affords a long-term protection from tumor recurrence

    Effects of a high-fat diet on the electrical properties of porcine atria

    Get PDF
    AbstractBackgroundBecause obesity is an important risk factor for atrial fibrillation (AF), we conducted an animal study to examine the effect of a high-fat diet (HFD) on atrial properties and AF inducibility.MethodsTen 8-week-old pigs (weight, 18–23kg) were divided into two groups. For 18 weeks, five pigs were fed a HFD (HFD group) and five were fed a normal diet (control group). Maps of atrial activation and voltages during sinus rhythm were created for all pigs using the EnSite NavX system. Effective refractory period (ERP) and AF inducibility were also determined. When AF was induced, complex fractionated atrial electrogram (CFAE) mapping was performed. At 18 weeks, hearts were removed for comparing the results of histological analysis between the two groups. Body weight, lipid levels, hemodynamics, cardiac structures, and electrophysiological properties were also compared.ResultsTotal cholesterol levels were significantly higher (347 [191–434] vs. 81 [67–88]mg/dL, P=0.0088), and left atrium pressure was higher (34.5 [25.6–39.5] vs. 24.5 [21.3–27.8]mmHg, P=0.0833) in the HFD group than in the control group, although body weight only increased marginally (89 [78–101] vs. 70 [66–91]kg, P=0.3472). ERPs of the pulmonary vein (PV) were shorter (P<0.05) and AF lasted longer in the HFD group than in the control group (80 [45–1350] vs. 22 [3–30]s, P=0.0212). Neither CFAE site distribution nor histopathological characteristics differed between the two groups.ConclusionsThe shorter ERPs for the PV observed in response to the HFD increased vulnerability to AF, and these electrophysiological characteristics may underlie obesity-related AF

    Giant Molecular Clouds in the Spiral Arm of IC 342

    Full text link
    We present results of 12CO (1--0) and 13CO (1--0) observations of the northeastern spiral arm segment of IC 342 with a ~50pc resolution carried out with the Nobeyama Millimeter Array. Zero-spacing components were recovered by combining with the existing data taken with the Nobeyama 45m telescope. The objective of this study is to investigate the variation of cloud properties across the spiral arm with a resolution comparable to the size of giant molecular clouds (GMCs). The observations cover a 1 kpc times 1.5 kpc region located ~2 kpc away from the galactic center, where a giant molecular association is located at trailing side and associated star forming regions at leading side. The spiral arm segment was resolved into a number of clouds whose size, temperature and surface mass density are comparable to typical GMCs in the Galaxy. Twenty-six clouds were identified from the combined data cube and the identified clouds followed the line width-size relation of the Galactic GMCs. The identified GMCs were divided into two categories according to whether they are associated with star formation activity or not. Comparison between both categories indicated that the active GMCs are more massive, have smaller line width, and are closer to virial equilibrium compared to the quiescent GMCs. These variations of the GMC properties suggest that dissipation of excess kinetic energy of GMC is a required condition for the onset of massive star formation.Comment: 17 pages, 13 figures, accepted for publication in Ap

    Deoxymugineic acid increases Zn translocation in Zn-deficient rice plants

    Get PDF
    Deoxymugineic acid (DMA) is a member of the mugineic acid family phytosiderophores (MAs), which are natural metal chelators produced by graminaceous plants. Rice secretes DMA in response to Fe deficiency to take up Fe in the form of Fe(III)–MAs complex. In contrast with barley, the roots of which secrete MAs in response to Zn deficiency, the amount of DMA secreted by rice roots was slightly decreased under conditions of low Zn supply. There was a concomitant increase in endogenous DMA in rice shoots, suggesting that DMA plays a role in the translocation of Zn within Zn-deficient rice plants. The expression of OsNAS1 and OsNAS2 was not increased in Zn-deficient roots but that of OsNAS3 was increased in Zn-deficient roots and shoots. The expression of OsNAAT1 was also increased in Zn-deficient roots and dramatically increased in shoots; correspondingly, HPLC analysis was unable to detect nicotianamine in Zn-deficient shoots. The expression of OsDMAS1 was increased in Zn-deficient shoots. Analyses using the positron-emitting tracer imaging system (PETIS) showed that Zn-deficient rice roots absorbed less 62Zn-DMA than 62Zn2+. Importantly, supply of 62Zn-DMA rather than 62Zn2+ increased the translocation of 62Zn into the leaves of Zn-deficient plants. This was especially evident in the discrimination center (DC). These results suggest that DMA in Zn-deficient rice plants has an important role in the distribution of Zn within the plant rather than in the absorption of Zn from the soil
    corecore