19 research outputs found

    Physiology and transcriptomics of water-deficit stress responses in wheat cultivars TAM 111 and TAM 112

    Get PDF
    Citation: Reddy, S. K., Liu, S., Rudd, J. C., Xue, Q., Payton, P., Finlayson, S. A., … Lu, N. (2014). Physiology and transcriptomics of water-deficit stress responses in wheat cultivars TAM 111 and TAM 112. Retrieved from http://krex.ksu.eduHard red winter wheat crops on the U.S. Southern Great Plains often experience moderate to severe drought stress, especially during the grain filling stage, resulting in significant yield losses. Cultivars TAM 111 and TAM 112 are widely cultivated in the region, share parentage and showed superior but distinct adaption mechanisms under water-deficit (WD) conditions. Nevertheless, the physiological and molecular basis of their adaptation remains unknown. A greenhouse study was conducted to understand the differences in the physiological and transcriptomic responses of TAM 111 and TAM 112 to WD stress. Whole-plant data indicated that TAM 112 used more water, produced more biomass and grain yield under WD compared to TAM 111. Leaf-level data at the grain filling stage indicated that TAM 112 had elevated abscisic acid (ABA) content and reduced stomatal conductance and photosynthesis as compared to TAM 111. Sustained WD during the grain filling stage also resulted in greater flag leaf transcriptome changes in TAM 112 than TAM 111. Transcripts associated with photosynthesis, carbohydrate metabolism, phytohormone metabolism, and other dehydration responses were uniquely regulated between cultivars. These results suggested a differential role for ABA in regulating physiological and transcriptomic changes associated with WD stress and potential involvement in the superior adaptation and yield of TAM 112

    Comparison of the Effect of Corn-fermented Protein and Traditional Ingredients on the Fecal Microbiota of Dogs

    No full text
    Corn-fermented protein (CFP), a co-product from the ethanol industry, is produced using post-fermentation technology to split the protein and yeast from fiber prior to drying. The objective of this study was to determine the effect of CFP compared to traditional ingredients on the fecal microbiota of dogs. The four experimental diets included a control with no yeast and diets containing either 3.5% brewer’s dried yeast, 2.5% brewer’s dried yeast plus 17.5% distiller’s dried grains with solubles, or 17.5% CFP. The experimental diets were fed to adult dogs (n = 12) in a 4 × 4 replicated Latin square design. Fresh fecal samples (n = 48) were analyzed by 16S metagenomic sequencing. Raw sequences were processed through mothur. Community diversity was evaluated in R. Relative abundance data were analyzed within the 50 most abundant operational taxonomic units using a mixed model of SAS. Alpha and beta diversity were similar for all treatments. Predominant phyla among all samples were Firmicutes (73%), Bacteroidetes (15%), Fusobacteria (8%), and Actinobacteria (4%). There were no quantifiable (p > 0.05) shifts in the predominant phyla among the treatments. However, nine genera resulted in differences in relative abundance among the treatments. These data indicate that compared to traditional ingredients, CFP did not alter the overall diversity of the fecal microbiota of healthy adult dogs over 14 days

    Metabolomics and Lipidomics Analyses Aid Model Classification of Type 2 Diabetes in Non-Human Primates

    No full text
    Type 2 diabetes (T2D) is a global public health issue characterized by excess weight, abdominal obesity, dyslipidemia, hyperglycemia, and a progressive increase in insulin resistance. Human population studies of T2D development and its effects on systemic metabolism are confounded by many factors that cannot be controlled, complicating the interpretation of results and the identification of early biomarkers. Aged, sedentary, and overweight/obese non-human primates (NHPs) are one of the best animal models to mimic spontaneous T2D development in humans. We sought to identify and distinguish a set of plasma and/or fecal metabolite biomarkers, that have earlier disease onset predictability, and that could be evaluated for their predictability in subsequent T2D studies in human cohorts. In this study, a single plasma and fecal sample was collected from each animal in a colony of 57 healthy and dysmetabolic NHPs and analyzed for metabolomics and lipidomics. The samples were comprehensively analyzed using untargeted and targeted LC/MS/MS. The changes in each animal’s disease phenotype were monitored using IVGTT, HbA1c, and other clinical metrics, and correlated with their metabolic profile. The plasma and fecal lipids, as well as bile acid profiles, from Healthy, Dysmetabolic (Dys), and Diabetic (Dia) animals were compared. Following univariate and multivariate analyses, including adjustments for weight, age, and sex, several plasma lipid species were identified to be significantly different between these animal groups. Medium and long-chain plasma phosphatidylcholines (PCs) ranked highest at distinguishing Healthy from Dys animals, whereas plasma triglycerides (TG) primarily distinguished Dia from Dys animals. Random Forest (RF) analysis of fecal bile acids showed a reduction in the secondary bile acid glycoconjugate, GCDCA, in diseased animals (AUC 0.76[0.64, 0.89]). Moreover, metagenomics results revealed several bacterial species, belonging to the genera Roseburia, Ruminococcus, Clostridium, and Streptococcus, to be both significantly enriched in non-healthy animals and associated with secondary bile acid levels. In summary, our results highlight the detection of several elevated circulating plasma PCs and microbial species associated with fecal secondary bile acids in NHP dysmetabolic states. The lipids and metabolites we have identified may help researchers to differentiate individual NHPs more precisely between dysmetabolic and overtly diabetic states. This could help assign animals to study groups that are more likely to respond to potential therapies where a difference in efficacy might be anticipated between early vs. advanced disease

    Proteomic and Transcriptomic Analyses of Rigid and Membranous Cuticles and Epidermis from the Elytra and Hindwings of the Red Flour Beetle, <i>Tribolium castaneum</i>

    No full text
    The insect cuticle is a composite biomaterial made up primarily of chitin and proteins. The physical properties of the cuticle can vary greatly from hard and rigid to soft and flexible. Understanding how different cuticle types are assembled can aid in the development of novel biomimetic materials for use in medicine and technology. Toward this goal, we have taken a combined proteomics and transcriptomics approach with the red flour beetle, <i>Tribolium castaneum</i>, to examine the protein and gene expression profiles of the elytra and hindwings, appendages that contain rigid and soft cuticles, respectively. Two-dimensional gel electrophoresis analysis revealed distinct differences in the protein profiles between elytra and hindwings, with four highly abundant proteins dominating the elytral cuticle extract. MALDI/TOF mass spectrometry identified 19 proteins homologous to known or hypothesized cuticular proteins (CPs), including a novel low complexity protein enriched in charged residues. Microarray analysis identified 372 genes with a 10-fold or greater difference in transcript levels between elytra and hindwings. CP genes with higher expression in the elytra belonged to the Rebers and Riddiford family (CPR) type 2, or cuticular proteins of low complexity (CPLC) enriched in glycine or proline. In contrast, a majority of the CP genes with higher expression in hindwings were classified as CPR type 1, cuticular proteins analogous to peritrophins (CPAP), or members of the Tweedle family. This research shows that the elyra and hindwings, representatives of rigid and soft cuticles, have different protein and gene expression profiles for structural proteins that may influence the mechanical properties of these cuticles

    Proteomic and Transcriptomic Analyses of Rigid and Membranous Cuticles and Epidermis from the Elytra and Hindwings of the Red Flour Beetle, <i>Tribolium castaneum</i>

    No full text
    The insect cuticle is a composite biomaterial made up primarily of chitin and proteins. The physical properties of the cuticle can vary greatly from hard and rigid to soft and flexible. Understanding how different cuticle types are assembled can aid in the development of novel biomimetic materials for use in medicine and technology. Toward this goal, we have taken a combined proteomics and transcriptomics approach with the red flour beetle, <i>Tribolium castaneum</i>, to examine the protein and gene expression profiles of the elytra and hindwings, appendages that contain rigid and soft cuticles, respectively. Two-dimensional gel electrophoresis analysis revealed distinct differences in the protein profiles between elytra and hindwings, with four highly abundant proteins dominating the elytral cuticle extract. MALDI/TOF mass spectrometry identified 19 proteins homologous to known or hypothesized cuticular proteins (CPs), including a novel low complexity protein enriched in charged residues. Microarray analysis identified 372 genes with a 10-fold or greater difference in transcript levels between elytra and hindwings. CP genes with higher expression in the elytra belonged to the Rebers and Riddiford family (CPR) type 2, or cuticular proteins of low complexity (CPLC) enriched in glycine or proline. In contrast, a majority of the CP genes with higher expression in hindwings were classified as CPR type 1, cuticular proteins analogous to peritrophins (CPAP), or members of the Tweedle family. This research shows that the elyra and hindwings, representatives of rigid and soft cuticles, have different protein and gene expression profiles for structural proteins that may influence the mechanical properties of these cuticles
    corecore