93 research outputs found
Alchemical and structural distribution based representation for improved QML
We introduce a representation of any atom in any chemical environment for the
generation of efficient quantum machine learning (QML) models of common
electronic ground-state properties. The representation is based on scaled
distribution functions explicitly accounting for elemental and structural
degrees of freedom. Resulting QML models afford very favorable learning curves
for properties of out-of-sample systems including organic molecules,
non-covalently bonded protein side-chains, (HO)-clusters, as well as
diverse crystals. The elemental components help to lower the learning curves,
and, through interpolation across the periodic table, even enable "alchemical
extrapolation" to covalent bonding between elements not part of training, as
evinced for single, double, and triple bonds among main-group elements
Deletion of heat shock protein 60 in adult mouse cardiomyocytes perturbs mitochondrial protein homeostasis and causes heart failure.
To maintain healthy mitochondrial enzyme content and function, mitochondria possess a complex protein quality control system, which is composed of different endogenous sets of chaperones and proteases. Heat shock protein 60 (HSP60) is one of these mitochondrial molecular chaperones and has been proposed to play a pivotal role in the regulation of protein folding and the prevention of protein aggregation. However, the physiological function of HSP60 in mammalian tissues is not fully understood. Here we generated an inducible cardiac-specific HSP60 knockout mouse model, and demonstrated that HSP60 deletion in adult mouse hearts altered mitochondrial complex activity, mitochondrial membrane potential, and ROS production, and eventually led to dilated cardiomyopathy, heart failure, and lethality. Proteomic analysis was performed in purified control and mutant mitochondria before mutant hearts developed obvious cardiac abnormalities, and revealed a list of mitochondrial-localized proteins that rely on HSP60 (HSP60-dependent) for correctly folding in mitochondria. We also utilized an in vitro system to assess the effects of HSP60 deletion on mitochondrial protein import and protein stability after import, and found that both HSP60-dependent and HSP60-independent mitochondrial proteins could be normally imported in mutant mitochondria. However, the former underwent degradation in mutant mitochondria after import, suggesting that the protein exhibited low stability in mutant mitochondria. Interestingly, the degradation could be almost fully rescued by a non-specific LONP1 and proteasome inhibitor, MG132, in mutant mitochondria. Therefore, our results demonstrated that HSP60 plays an essential role in maintaining normal cardiac morphology and function by regulating mitochondrial protein homeostasis and mitochondrial function
Effects of transplantation with bone marrow-derived mesenchymal stem cells modified by Survivin on experimental stroke in rats
<p>Abstract</p> <p>Background</p> <p>This study was performed to determine whether injury induced by cerebral ischemia could be further improved by transplantation with bone marrow-derived mesenchymal stem cells (MSCs) modified by Survivin (SVV).</p> <p>Methods</p> <p>MSCs derived from bone marrow of male Sprague-Dawley rats were infected by the self-inactive lentiviral vector GCFU carrying green fluorescent protein (GFP) gene and SVV recombinant vector (GCFU-SVV). In vitro, vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) were detected in infected MSCs supernatants under hypoxic conditions by ELSIA. In vivo, experiments consisted of three groups, one receiving intravenous injection of 500 μl of phosphate-buffered saline (PBS) without cells (control group) and two groups administered the same volume solution with either three million GFP-MSCs (group GFP) or SVV/GFP-MSCs (group SVV). All animals were submitted to 2-hour middle cerebral artery occlusion (MCAO) and then reperfusion. Differentiation and survival of the transplanted MSCs were determined by confocal microscope. Western blot was used to detect the expression of VEGF and bFGF in ischemic tissue. A 2,3,5-triphenyltetrazolium chloride (TTC) staining was used to assess the infarct volume. Evaluation of neurological function was performed using a modified Neurological Severity Score (mNSS).</p> <p>Results</p> <p>In vitro, modification with SVV further increased secretion of VEGF and bFGF under hypoxic condition. In vivo, only very few transplantated cells co-expressed GFP and NeuN. The survival transplanted cells in the group SVV was 1.3-fold at 4 days after transplantation and 3.4-fold higher at 14 days after transplantation, respectively, when compared with group GFP. Expression of VEGF and bFGF in the ischemic tissue were further up-regulated by modification with SVV. Moreover, modification with SVV further reduced the cerebral infarct volume by 5.2% at 4 days after stroke and improved post-stroke neurological function at 14 days after transplantation.</p> <p>Conclusion</p> <p>Modification with SVV could further enhance the therapeutic effects of MSCs possibly through improving the MSCs survival capacity and up-regulating the expression of protective cytokines in the ischemic tissue.</p
Exercise for prevention of falls and fall-related injuries in neurodegenerative diseases and aging-related risk conditions: a meta-analysis
IntroductionNeurodegenerative diseases often cause motor and cognitive deterioration that leads to postural instability and motor impairment, while aging-associated frailty frequently results in reduced muscle mass, balance, and mobility. These conditions increase the risk of falls and injuries in these populations. This study aimed to determine the effects of exercise on falls and consequent injuries among individuals with neurodegenerative diseases and frail aging people.MethodsElectronic database searches were conducted in PubMed, Cochrane Library, SportDiscus, and Web of Science up to 1 January 2023. Randomized controlled trials that reported the effects of exercise on falls and fall-related injuries in neurodegenerative disease and frail aging people were eligible for inclusion. The intervention effects for falls, fractures, and injuries were evaluated by calculating the rate ratio (RaR) or risk ratio (RR) with 95% confidence interval (CI).ResultsSixty-four studies with 13,241 participants met the inclusion criteria. Exercise is effective in reducing falls for frail aging people (RaR, 0.75; 95% CI, 0.68–0.82) and participants with ND (0.53, 0.43–0.65) [dementia (0.64, 0.51–0.82), Parkinson’s disease (0.49, 0.39–0.69), and stroke survivors (0.40, 0.27–0.57)]. Exercise also reduced fall-related injuries in ND patients (RR, 0.66; 95% CI, 0.48–0.90) and decreased fractures (0.63, 0.41–0.95) and fall-related injuries (0.89, 0.84–0.95) among frail aging people. For fall prevention, balance and combined exercise protocols are both effective, and either short-, moderate-, or long-term intervention duration is beneficial. More importantly, exercise only induced a very low injury rate per participant year (0.007%; 95% CI, 0–0.016) and show relatively good compliance with exercise (74.8; 95% CI, 69.7%–79.9%).DiscussionExercise is effective in reducing neurodegenerative disease- and aging-associated falls and consequent injuries, suggesting that exercise is an effective and feasible strategy for the prevention of falls
Genome-Wide Characterization of Endogenous Retroviruses in Bombyx mori Reveals the Relatives and Activity of env Genes
Endogenous retroviruses (ERVs) are retroviral sequences that remain fixed in the host genome, where they could play an important role. Some ERVs have been identified in insects and proven to have infectious properties. However, no information is available regarding Bombyx mori ERVs (BmERVs) to date. Here, we systematically identified 256 potential BmERVs in the silkworm genome via a whole-genome approach. BmERVs were relatively evenly distributed across each of the chromosomes and accounted for about 25% of the silkworm genome. All BmERVs were classified as young ERVs, with insertion times estimated to be less than 10 million years. Seven BmERVs possessing the env genes were identified. With the exception of the Orf133 Helicoverpa armigera nuclear polyhedrosis virus, the env sequences of BmERVs were distantly related to genes encoding F (Fa and Fb) and GP64 proteins from Group I and Group II NPVs. In addition, only the amino acid sequence of the BmERV-21 envelope protein shared a similar putative furin-like cleavage site and fusion peptide with Group II baculoviruses. All of the env genes in the seven BmERVs were verified to exist in the genome and be expressed in the midgut and fat bodies, which suggest that BmERVs might play an important role in the host biology
Finishing the euchromatic sequence of the human genome
The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
- …