20 research outputs found

    Effects of Zinc Sulfate Supplementation in Treatment of Iron Defi ciency Anemia

    Get PDF
    OBJECTIVE: In this study, we aimed to compare the effect(s) of zinc sulphate on growth and serum iron variables when it is given with ferrous sulphate in iron deficiency anemia (IDA). METHODS: Patients (n=79) were randomly divided into two groups. In one group (n=40) 4 mg/kg/d ferrous sulfate was given orally. In the other group (n=39), in addition to ferrous sulfate, 5 mg/d oral zinc sulfate was given. RESULTS: Compared to the initial values statistically significant increase in mean height, weight, and head circumference has been observed in both groups after 3 months. However, there was no statistical difference between two groups concerning mean height, weight, and head circumference at the beginning (83.43±11.3 cm vs 84.62±12.77 cm; 12.36±3.08 kg vs 12.72±3.87 kg; 47.33±2.15 cm vs 47.26±2.73 cm, respectively), at the first month, (84.82±10.97 vs 85.97±12.28; 12.78±3.09 vs 13.09±3.87; 47.76±2.10 vs 47.61±2.67, respectively), and at the third month, (86.4±11.12 vs 87.69±12.13; 12.9±3.06 vs 13.35±3.81; 48.22±1.89 vs 48.07±2.45, respectively). There were no statistical differences between mean hematological parameters of the groups at the beginning, at the first month, and at the third month, either (mean hb of Group 1: 8.78±1.12 g/dL; 11.27±1.09 g/ dL; 12.05±1.00 g/dL respectively and of Group 2: 9.10±1.07 g/dL; 11.12±0.85 g/dL; 11.80±0.79 g/dL, respectively). Mean ferritin and zinc values of the groups were statistically insignificant at the beginning (Mean ferritin: 4.96±4.03 μg/dL vs 4.52±2.94 μg/dL, zinc: 88.64±15.35 ng/mL vs 86.84±17.34 ng/mL). Their increase was statistically significant at the third month (mean ferritin: 15.91±9.57 μg/dL vs 15.25±10.47 μg/dL; zinc: 88.02±15.10 ng/mL vs 95.25±16.55 ng/mL). CONCLUSION: In our study neither positive nor negative effect of zinc administration on IDA treatment was demonstrated. Therefore, in the treatment of IDA zinc together with iron should be used at different times if there is coexistent zinc deficiency

    A homozygous duplication of the FGG exon 8-intron 8 junction causes congenital afibrinogenemia. Lessons learned from the study of a large consanguineous Turkish family

    No full text
    Congenital afibrinogenemia is the most severe congenital fibrinogen disorder, characterised by undetectable fibrinogen in circulation. Causative mutations can be divided into two main classes: null mutations with no protein production at all and missense mutations producing abnormal protein chains that are retained inside the cell. The vast majority of cases are due to single base pair mutations or small insertions or deletions in the coding regions or intron-exon junctions of FGB, FGA and FGG. Only a few large rearrangements have been described, all deletions involving FGA. Here we report the characterization of a 403 bp duplication of the FGG exon 8-intron 8 junction accounting for congenital afibrinogenemia in a large consanguineous family from Turkey. This mutation, which had escaped detection by Sanger sequencing of short PCR amplicons of coding sequences and splice sites, was identified by studying multiple alignments of reads obtained from Whole Exome Sequencing of a heterozygous individual followed by PCR amplification and sequencing of a larger portion of FGG. Because the mutation duplicates the donor splice site of intron 8, we predicted that the impact of the mutation would be on FGG transcript splicing. Analysis of mRNAs produced by cells transiently transfected with normal or mutant minigene constructs showed that the duplication causes production of several aberrant FGG transcripts generating premature truncating codons

    Intestinal mycobiota composition and changes in children with thalassemia who underwent allogeneic hematopoietic stem cell transplantation

    No full text
    [Background]: Allogeneic hematopoietic stem cell transplantation (HSCT) alters the diversity of the intestinal bacterial microbiota. This study aimed to evaluate human mycobiota composition pre-HSCT and post-HSCT in children with thalassemia.[Method]: Ten children with thalassemia undergoing allogeneic HSCT were enrolled. The stool samples were collected before the transplantation regimen, before the transplant day, and +15, +30 days, and three months after transplantation. Stool samples were also collected from the donor and the patient's caregivers. Gut mycobiota composition was evaluated with metagenomic analysis.[Results]: Pretransplant mycobiota of children with thalassemia (the predominant genus was Saccharomyces, 64.1%) has been shown to approximate the diverse mycobiota compositions of healthy adult donors but becomes altered (lower diversity) following transplant procedures. Three months after HSCT, phyla Ascomycota and Basidiomycota were 83.4% and 15.6%, respectively. The predominant species were Saccaharomyces_uc and Saccharomyces cerevisiae (phylum Ascomycota); we also observed Malassezia restricta and Malassezia globosa (phylum Basidiomycota) (∼13%). On day 90 after HSCT, we observed 65.3% M. restricta and 18.4% M. globosa predominance at the species level in a four-year-old boy with acute graft-versus-host disease (GVHD) (skin and gut involvement) 19 days after transplantation included.[Conclusion]: The mycobiota composition of children with thalassemia altered after HSCT. We observed Malassezia predominance in a child with GVHD. Further studies in children with GVHD will identify this situation.This study was financially supported by the Biocodex Microbiota Foundation-2018,Turkey.Peer reviewe
    corecore