15 research outputs found

    Dietary Iron bioavailability: A simple model that can be used to derive country-specific dietary reference values for adult men and women

    Get PDF
    Background: Reference intakes for iron are derived from physiological requirements, with an assumed value for dietary iron absorption. A new approach to estimate iron bioavailability, calculated from iron intake, status, and requirements was used to set European dietary reference values, but the values obtained cannot be used for low- and middle-income countries where diets are very different. Objective: We aimed to test the feasibility of using the model developed from United Kingdom and Irish data to derive a value for dietary iron bioavailability in an African country, using data collected from women of child-bearing age in Benin. We also compared the effect of using estimates of iron losses made in the 1960s with more recent data for whole body iron losses. Methods: Dietary iron intake and serum ferritin (SF), together with physiological requirements of iron, were entered into the predictive model to estimate percentage iron absorption from the diet at different levels of iron status. Results: The results obtained from the 2 different methods for calculating physiological iron requirements were similar, except at low SF concentrations. At a SF value of 30 µg/L predicted iron absorption from the African maize-based diet was 6%, compared with 18% from a Western diet, and it remained low until the SF fell below 25 µg/L. Conclusions: We used the model to estimate percentage dietary iron absorption in 30 Beninese women. The predicted values agreed with results from earlier single meal isotope studies; therefore, we conclude that the model has potential for estimating dietary iron bioavailability in men and nonpregnant women consuming different diets in other countries

    Iron deficiency was not the major cause of anemia in rural women of reproductive age in Sidama zone, southern Ethiopia: A cross-sectional study

    Get PDF
    Background Anemia, which has many etiologies, is a moderate/severe public health problem in young children and women of reproductive age in many developing countries. The aim of this study was to investigate prevalence of iron deficiency, anemia, and iron deficiency anemia using multiple biomarkers and to evaluate their association with food insecurity and food consumption patterns in non-pregnant women from a rural area of southern Ethiopia. Methods A cross-sectional study was conducted in 202 rural women of reproductive age in southern Ethiopia. Anthropometrics and socio-demographic data were collected. A venipuncture blood sample was analyzed for hemoglobin (Hb) and for biomarkers of iron status. Biomarkers were skewed and were log transformed before analysis. Mean, median, Pearson\u27s correlations and ordinary least-squares regressions were calculated. Results Median (IQR) Hb was 138 (127, 151) g/L. Based on an altitude-adjusted (1708 m) cutoff of 125 g/L for Hb, 21.3% were anemic. Plasma ferritin was \u3c15 μg/L in 18.6% of the women. Only one woman had α-1-acid glycoprotein (AGP) \u3e1.0 g/L; four women (2%) had \u3e 5 mg/L of C-reactive protein (CRP). Of the 43 women who were anemic, 23.3% (10 women) had depleted iron stores based on plasma ferritin. Three of these had elevated soluble transferring receptors (sTfR). Hemoglobin (Hb) concentration was negatively correlated with sTfR (r = -0.24, p = 0.001), and positively correlated with ferritin (r = 0.17, p = 0.018), plasma iron (r = 0.15, p = 0.046), transferrin saturation (TfS) (r = 0.15, p = 0.04) and body iron (r = 0.14, p = 0.05). Overall prevalence of iron deficiency anemia was only 5%. Conclusion Iron deficiency anemia was not prevalent in the study population, despite the fact that anemia would be classified as a moderate public health problem

    Effects of long-term weekly iron and folic acid supplementation on lower genital tract infection - a double blind, randomised controlled trial in Burkina Faso

    Get PDF
    BACKGROUND: Provision of routine iron supplements to prevent anaemia could increase the risk for lower genital tract infections as virulence of some pathogens depends on iron availability. This trial in Burkina Faso assessed whether weekly periconceptional iron supplementation increased the risk of lower genital tract infection in young non-pregnant and pregnant women. METHODS: Genital tract infections were assessed within a double blind, controlled, non-inferiority trial of malaria risk among nulliparous women, randomised to receive either iron and folic acid or folic acid alone, weekly, under direct observation for 18 months. Women conceiving during this period entered the pregnancy cohort. End assessment (FIN) for women remaining non-pregnant was at 18 months. For the pregnancy cohort, end assessment was at the first scheduled antenatal visit (ANC1). Infection markers included Nugent scores for abnormal flora and bacterial vaginosis (BV), T. vaginalis PCR, vaginal microbiota, reported signs and symptoms, and antibiotic and anti-fungal prescriptions. Iron biomarkers were assessed at baseline, FIN and ANC1. Analysis compared outcomes by intention to treat and in iron replete/deficient categories. RESULTS: A total of 1954 women (mean 16.8 years) were followed and 478 (24.5%) became pregnant. Median supplement adherence was 79% (IQR 59-90%). Baseline BV prevalence was 12.3%. At FIN and ANC1 prevalence was 12.8% and 7.0%, respectively (P < 0.011). T. vaginalis prevalence was 4.9% at FIN and 12.9% at ANC1 (P < 0.001). BV and T. vaginalis prevalence and microbiota profiles did not differ at trial end-points. Iron-supplemented non-pregnant women received more antibiotic treatments for non-genital infections (P = 0.014; mainly gastrointestinal infections (P = 0.005), anti-fungal treatments for genital infections (P = 0.014) and analgesics (P = 0.008). Weekly iron did not significantly reduce iron deficiency prevalence. At baseline, iron-deficient women were more likely to have normal vaginal flora (P = 0.016). CONCLUSIONS: Periconceptional weekly iron supplementation of young women did not increase the risk of lower genital tract infections but did increase general morbidity in the non-pregnant cohort. Unabsorbed gut iron due to malaria could induce enteric infections, accounting for the increased administration of antibiotics and antifungals in the iron-supplemented arm. This finding reinforces concerns about routine iron supplementation in highly malarious areas

    Adjusting soluble transferrin receptor concentrations for inflammation: Biomarkers Reflecting Inflammation and Nutritional Determinants of Anemia (BRINDA) project.

    Get PDF
    Background: Iron deficiency is thought to be one of the most prevalent micronutrient deficiencies globally, but an accurate assessment in populations who are frequently exposed to infections is impeded by the inflammatory response, which causes iron-biomarker alterations.Objectives: We assessed the relation between soluble transferrin receptor (sTfR) concentrations and inflammation and malaria in preschool children (PSC) (age range: 6-59 mo) and women of reproductive age (WRA) (age range: 15-49 y) and investigated adjustment algorithms to account for these effects.Design: Cross-sectional data from the Biomarkers Reflecting the Inflammation and Nutritional Determinants of Anemia (BRINDA) project from 11,913 PSC in 11 surveys and from 11,173 WRA in 7 surveys were analyzed individually and combined with the use of a meta-analysis. The following 3 adjustment approaches were compared with estimated iron-deficient erythropoiesis (sTfR concentration >8.3 mg/L): 1) the exclusion of individuals with C-reactive protein (CRP) concentrations >5 mg/L or α-1-acid glycoprotein (AGP) concentrations >1 g/L, 2) the application of arithmetic correction factors, and 3) the use of regression approaches.Results: The prevalence of elevated sTfR concentrations incrementally decreased as CRP and AGP deciles decreased for PSC and WRA, but the effect was more pronounced for AGP than for CRP. Depending on the approach used to adjust for inflammation, the estimated prevalence of iron-deficient erythropoiesis decreased by 4.4-14.6 and 0.3-9.5 percentage points in PSC and WRA, respectively, compared with unadjusted values. The correction-factor approach yielded a more modest reduction in the estimated prevalence of iron-deficient erythropoiesis than did the regression approach. Mostly, adjustment for malaria in addition to AGP did not significantly change the estimated prevalence of iron-deficient erythropoiesis.Conclusions: sTfR may be useful to assess iron-deficient erythropoiesis, but inflammation influences its interpretation, and adjustment of sTfR for inflammation and malaria should be considered. More research is warranted to evaluate the proposed approaches in different settings, but this study contributes to the evidence on how and when to adjust sTfR for inflammation and malaria

    When age really matters : ferritin reference intervals during infancy revisited

    No full text
    Infants are at risk for iron deficiency. Despite research advances, assessing iron stores during infancy remains a challenge to the clinician. Ferritin is the first-choice laboratory marker for measuring iron stores but it is today still unclear how to evaluate reference intervals among infants. We have studied Swedish infants (n = 456), born at term after normal pregnancies. Ferritin was measured at birth (umbilical cord sample), 48-72 h, 4 months and 12 months. Lower and upper reference interval limits were constructed as the 2.5th and 97.5th percentiles. By a large study population, we were able to use more stringent measures to avoid interference from the acute phase response than previous reports on ferritin reference intervals. When we used mathematical transformation we furthermore avoided potential information loss in precision and confirmed earlier reports of sex differences. At the lower reference interval limits there were small differences between sexes. For the higher limits, the differences were more pronounced in the older infant. At 0-3 d of age we observed a difference between the sexes of only 5% at the upper limits. The differences peaked at 12 months, where the boys' upper 97.5th percentile was 56% compared to girls
    corecore