1,043 research outputs found

    Optimal management of a flammable forest providing timber and carbon sequestration benefits: an Australian case study

    Get PDF
    In deciding to keep or fell a forest stand given its age, the risk of loss of timber through wildfire is an important consideration. If trees also have value from sequestration of carbon, another effect of fire is the unplanned loss of stored carbon. Factors affecting the decision to keep or fell trees, and how much to spend on fire protection, are investigated using stochastic dynamic programming, using carbon sequestration in stands of mountain ash in Victoria as a case study. The effect of treating sawlogs as a permanent carbon sink after harvesting is explored.Forest management, timber, carbon, dynamic, programming, Resource /Energy Economics and Policy,

    Habitat change and restoration: Responses of a forest-floor mammal species to manipulations of fallen timber in floodplain forests

    Get PDF
    In forests and woodlands, fallen timber (logs and large branches) is an important habitat element for many species of animals. Fallen timber has been systematically stripped in many forests, eliminating an important structural element. This study describes results of a ‘meso-scale’ experiment in which fallen timber was manipulated in a floodplain forest of the Murray River in south-eastern Australia. A thousand tons of wood were redistributed after one-year’s pre-manipulation monitoring, while a further two-year’s post-manipulation monitoring was conducted. The response of the main forest-floor small-mammal species, the Yellow-footed Antechinus Antechinus flavipes, to alterations of fallen-wood loads is documented. Results of the experiment will help to frame guidelines for fallen-timber management in these extensive floodplain forests

    Cambio y restauración del hábitat: respuestas de una especie de mamíferos del suelo forestal a las manipulaciones de los árboles caídos en bosques inundados

    Get PDF
    In forests and woodlands, fallen timber (logs and large branches) is an important habitat element for many species of animals. Fallen timber has been systematically stripped in many forests, eliminating an important structural element. This study describes results of a "meso–scale" experiment in which fallen timber was manipulated in a floodplain forest of the Murray River in south–eastern Australia. A thousand tons of wood were redistributed after one–year’s pre–manipulation monitoring, while a further two–year's post–manipulation monitoring was conducted. The response of the main forest–floor small–mammal species, the Yellow–footed Antechinus Antechinus flavipes, to alterations of fallen–wood loads is documented. Results of the experiment will help to frame guidelines for fallen–timber management in these extensive floodplain forests.En los bosques y montes los árboles caídos (troncos y ramas gruesas) constituyen un importante elemento del hábitat para muchas especies de animales. Los árboles caídos han sido sistemáticamente descortezados en muchos bosques, eliminándose así un importante elemento estructural. Este estudio describe resultados de un experimento a escala mediana en el que los árboles caídos fueron manipulados en un bosque inundado del río Murray, en el sureste de Australia. Se redistribuyeron 1.000 toneladas de madera después de efectuar un control previo a la manipulación durante un año, realizándose otro control durante dos años después de la manipulación. Se documenta la respuesta de la especie de mamífero del suelo del bosque, el ratón marsupial de pies amarillos Antechinus flavipes, a las alteraciones de la madera caída. Los resultados de este trabajo pueden servir de ayuda para elaborar unas directrices marco para la gestión de los árboles caídos en bosques inundados

    Where and when to revegetate : a quantitative method for scheduling landscape reconstruction

    Full text link
    Restoration of native vegetation is required in many regions of the world, but determining priority locations for revegetation is a complex problem. We consider the problem of determining spatial and temporal priorities for revegetation to maximize habitat for 62 bird species within a heavily cleared agricultural region, 11 000 km2 in area. We show how a reserve-selection framework can be applied to a complex, large-scale restoration-planning problem to account for multi-species objectives and connectivity requirements at a spatial extent and resolution relevant to management. Our approach explicitly accounts for time lags in planting and development of habitat resources, which is intended to avoid future population bottlenecks caused by delayed provision of critical resources, such as tree hollows. We coupled species-specific models of expected habitat quality and fragmentation effects with the dynamics of habitat suitability following replanting to produce species-specific maps for future times. Spatial priorities for restoration were determined by ranking locations (150-m grid cells) by their expected contribution to species habitat through time using the conservation planning tool, ‘‘Zonation.’’ We evaluated solutions by calculating expected trajectories of habitat availability for each species. We produced a spatially explicit revegetation schedule for the region that resulted in a balanced increase in habitat for all species. Priority areas for revegetation generally were clustered around existing vegetation, although not always. Areas on richer soils and with high rainfall were more highly ranked, reflecting their potential to support high-quality habitats that have been disproportionately cleared for agriculture. Accounting for delayed development of habitat resources altered the rank-order of locations in the derived revegetation plan and led to improved expected outcomes for fragmentation-sensitive species. This work demonstrates the potential for systematic restoration planning at large scales that accounts for multiple objectives, which is urgently needed by land and natural resource managers

    Human-induced biotic invasions and changes in plankton interaction networks

    Get PDF
    Summary: Pervasive and accelerating changes to ecosystems due to human activities remain major sources of uncertainty in predicting the structure and dynamics of ecological communities. Understanding which biotic interactions within natural multitrophic communities are weakened or augmented by invasions of non-native species in the context of other environmental pressures is needed for effective management. We used multivariate autoregressive models with detailed time-series data from largely freshwater and brackish regions of the upper San Francisco Estuary to assess the topology, direction and strength of trophic interactions following major invasions and establishment of non-native zooplankton in the early 1990s. We simultaneously compared the effects of fish and clam predation, environmental temperature and salinity intrusion using time-series data from >60 monitoring locations spanning more than three decades. We found changes in the networks of biotic interactions in both regions after the major zooplankton invasions. Our results imply an increased pressure on native herbivores; intensified negative interactions between herbivores and omnivores; and stronger bottom-up influence of juvenile copepods but weaker influence of phytoplankton as a resource for higher trophic levels following the invasions. We identified salinity intrusion as a primary pressure but showed relatively stronger importance of biotic interactions for understanding the dynamics of entire communities. Synthesis and applications. Our findings highlight the dynamic nature of biotic interactions and provide evidence of how simultaneous invasions of exotic species may alter interaction networks in diverse natural ecosystems over large spatial and temporal scales. Efforts to restore declining fish stocks may be in vain without fully considering the trophic dynamics that limit the flow of energy to target populations. Focusing on multitrophic interactions that may be threatened by invasions rather than a limited focus on responses of individual species or diversity is likely to yield more effective management strategies. © 2014 British Ecological Society

    Drought, disturbance and river resilience in the southern Murray–Darling Basin, Australia

    Get PDF
    Increased frequency, duration and intensity of droughts are predicted for much of the world due to anthropogenic climate change. Understanding resilience to these kinds of disturbance events is becoming ever more critical to inform management and policy decisions. Here, we provide a conceptual framework for ecological resilience by uniting the resistance–resilience framework with adaptation-pathway thinking. Drawing on both published and unpublished data, we explore the effects of a large and intense drought (the Australian ‘Millennium Drought’) on several ecosystem components (floodplain trees, floodplain birds, frogs, aquatic macroinvertebrates and fish) in the southern Murray–Darling Basin, Australia. We describe changes in these communities during and after the Millennium Drought. There is some suggestion that for fish and aquatic invertebrates, traits associated with resistance and resilience may contribute to determining which species decline and which recover and over what time scales. There has been insufficient attention to understanding the mechanisms that underpin resistance and resilience in this context. Better understanding of these mechanisms would enable a more nuanced approach to managing for potential vulnerability to altered disturbance patterns arising from climate change.</p

    Despotic, high-impact species and the subcontinental scale control of avian assemblage structure

    Get PDF
    Some species have disproportionate influence on assemblage structure, given their numbers or biomass. Most examples of such "strong interactors'' come from small-scale experiments or from observations of the effects of invasive species. There is evidence that entire avian assemblages in open woodlands can be influenced strongly by individual species over very large areas in eastern Australia, with small-bodied species (2000 km). A series of linked Bayesian models was used to identify large-bodied (>= 50 g) bird species that were associated with changes in occurrence and abundance of small-bodied species. One native species, the Noisy Miner (Manorina melanocephala; family Meliphagidae), was objectively identified as the sole large-bodied species having similar detrimental effects in all districts, depressing occurrence of 57 of 71 small-bodied species. Adverse effects on abundances of small-bodied species were profound when the Noisy Miner occurred with mean site abundances >= 1.6 birds/2 ha. The Noisy Miner may be the first species to have been shown to influence whole-of-avifauna assemblage structure through despotic aggressiveness over subcontinental scales. These substantial shifts in occurrence rates and abundances of small-bodied species flow on to alter species abundance distributions of entire assemblages over much of eastern Australia

    Responses of floodplain birds to high-amplitude precipitation fluctuations over two decades

    Get PDF
    Globally, high-amplitude variation in weather (e.g. precipitation) is increasing in frequency and magnitude. This appears to be so for the southern Murray-Darling Basin, Australia, where droughts of unprecedented (in the instrumental record, extending back to the mid-1800s) depth and duration (1997–first half of 2010; second half of 2012–) are being punctuated by extreme wet periods, albeit of shorter duration (‘Big Wet’, second half of 2010–first half of 2012). We have previously reported on the responses of floodplain-forest birds to the cessation of the longest recorded drought (‘Big Dry’, 1997–first half of 2010), but we found little evidence of a rebound, at least shortly after the Big Wet. However, we reasoned that there may have been insufficient time for the birds to have responded in that short time, so we repeated the survey program 5 years after the end of the Big Wet (2017). Bird occurrences, reproductive activity and success were substantially greater compared with late in the Big Dry (2009) than they had been soon after the Big Wet (2013). However, bird occurrences still fell well below measurements in the early-Big Dry (1998), so that the avifauna appears to be in decline, most probably because the length of drought periods far exceeds that of wet periods giving the birds too little time to recover fully. © 2022 The Authors. Austral Ecology published by John Wiley & Sons Australia, Ltd on behalf of Ecological Society of Australia

    Patterns of species richness, abundance and individual-size distributions in native-stream fish assemblages invaded by exotic and translocated fishes

    Get PDF
    Predicting the impacts of species introductions long has attracted the attention of ecologists yet there still is limited insight into how impacts on native assemblages vary with the degree of shared evolutionary context. Here, we used data from 535 stream-fish surveys from 15 catchments in north-eastern Spain (99,700 km2) to explore whether the relative effects on native fishes differ between fish introductions from two different ecoregions (i.e., evolutionary contexts), namely, catchments within Iberian Peninsula (i.e., ‘translocated species’) and catchments beyond Iberian Peninsula (i.e., ‘exotic fishes’). We used hierarchical Bayesian models to relate taxon richness, abundance, and the individual-size distributions (ISDs) of native fishes to the presence, abundance, and weighted trophic level (TL) of translocated and exotic fishes, conditional on geographic and habitat covariates. Environmental covariates dominated the percentage of explained variance (≥ 65%) for all responses. Translocated fishes accounted for more of the explained variance than did exotic fishes for ISDs and abundance, but not for native fish species richness. The presence of translocated fishes was associated with lower abundance and richness of native fishes, with individuals being smaller in the presence of translocated fishes of higher TL. The presence of exotic fishes was associated with a greater abundance and richness of native fishes, with individuals generally being larger in the presence of exotic fishes. Our study suggests that translocated fishes could be as problematic as exotic fishes when angling and water transfers among catchments to deal with climate change may increase the establishment of translocated fishes. We also discuss the difficulties of using fish body size as species-blind, transferable assemblage-level trait in fish monitoring
    corecore