196 research outputs found

    Solar dynamic power systems for space station

    Get PDF
    The Parabolic Offset Linearly Actuated Reflector (POLAR) solar dynamic module was selected as the baseline design for a solar dynamic power system aboard the space station. The POLAR concept was chosen over other candidate designs after extensive trade studies. The primary advantages of the POLAR concept are the low mass moment of inertia of the module about the transverse boom and the compactness of the stowed module which enables packaging of two complete modules in the Shuttle orbiter payload bay. The fine pointing control system required for the solar dynamic module has been studied and initial results indicate that if disturbances from the station are allowed to back drive the rotary alpha joint, pointing errors caused by transient loads on the space station can be minimized. This would allow pointing controls to operate in bandwidths near system structural frequencies. The incorporation of the fine pointing control system into the solar dynamic module is fairly straightforward for the three strut concentrator support structure. However, results of structural analyses indicate that this three strut support is not optimum. Incorporation of a vernier pointing system into the proposed six strut support structure is being studied

    Results From the John Glenn Biomedical Engineering Consortium. A Success Story for NASA and Northeast Ohio

    Get PDF
    The John Glenn Biomedical Engineering Consortium was established by NASA in 2002 to formulate and implement an integrated, interdisciplinary research program to address risks faced by astronauts during long-duration space missions. The consortium is comprised of a preeminent team of Northeast Ohio institutions that include Case Western Reserve University, the Cleveland Clinic, University Hospitals Case Medical Center, The National Center for Space Exploration Research, and the NASA Glenn Research Center. The John Glenn Biomedical Engineering Consortium research is focused on fluid physics and sensor technology that addresses the critical risks to crew health, safety, and performance. Effectively utilizing the unique skills, capabilities and facilities of the consortium members is also of prime importance. Research efforts were initiated with a general call for proposals to the consortium members. The top proposals were selected for funding through a rigorous, peer review process. The review included participation from NASA's Johnson Space Center, which has programmatic responsibility for NASA's Human Research Program. The projects range in scope from delivery of prototype hardware to applied research that enables future development of advanced technology devices. All of the projects selected for funding have been completed and the results are summarized. Because of the success of the consortium, the member institutions have extended the original agreement to continue this highly effective research collaboration through 2011

    International Collaboration in Lunar Exploration

    Get PDF
    The U.S. Vision for Space Exploration commits the United States to return astronauts to the moon by 2020 using the Ares I Crew Launch Vehicle and Ares V Cargo Launch Vehicle. Like the Apollo program of the 1960s and 1970s, this effort will require preliminary reconnaissance in the form of robotic landers and probes. Unlike Apollo, some of the data NASA will rely upon to select landing sites and conduct science will be based on international missions as well, including SMART-1, SELENE, and Lunar Reconnaissance Orbiter (LRO). Opportunities for international cooperation on the moon also lie in developing lunar exploration technologies. The European Space Agency's SMART-1 orbiter (Figure 1) is making the first comprehensive inventory of key chemical elements in the lunar surface. It is also investigating the impact theory of the moon's formation.

    Germinating the 2050 Cis-Lunar Econosphere

    Get PDF
    In early 2013, the Marshall Space Flight Center (MSFC) Director and MSFC's Office of Strategic Analysis and Communications (OSAC) chartered a diverse team for a six-week "sprint" to speculate (in a disciplined manner) and paint (with broad brush strokes) a picture of how earth, space, and public/private entities might be operating and relating to each other...in the year 2100. Two 12-person groups of civil servants, one with members having 15 years or less of NASA experience and the other with more senior members, worked independently and then compared and integrated their conclusions. In 2014, the "Space 2100" team, with some new team members and different group boundaries, ran a longer sprint to a) develop more detailed estimates of the operations and economics of space activities in the vicinity of the Earth and Moon in the 2050 time frame, b) identify evolutionary steps and viable paths needed to make that a reality, and c) recommend actions to enable and invigorate those steps. This paper explores Space 2100's first two sprints and their projections of NASA's role in what will likely be a highly networked international space industry and cis-lunar infrastructure

    Glenn Research Center Human Research Program: Overview

    Get PDF
    The NASA-Glenn Research Centers Human Research Program office supports a wide range of technology development efforts aimed at enabling extended human presence in space. This presentation provides a brief overview of the historical successes, current 2013 activities and future projects of NASA-GRCs Human Research Program

    Continuous Nicotine Exposure Does Not Affect Resurgence of Alcohol Seeking in Rats

    Get PDF
    Alcohol is the most commonly used drug in the United States and alcohol abuse can lead to alcohol use disorder. Alcohol use disorder is a persistent condition and relapse rates following successful remission are high. Many factors have been associated with relapse for alcohol use disorder, but identification of these factors has not been well translated into preventative utility. One potentially important factor, concurrent nicotine use, has not been well investigated as a causal factor in relapse for alcohol use disorder. Nicotine increases the value of other stimuli in the environment and may increase the value of alcohol. If nicotine increases the value of alcohol, then nicotine use during and after treatment may make relapse more probable. In the current study, we investigated the effect of continuous nicotine exposure (using osmotic minipumps to deliver nicotine or saline, depending on group, at a constant rate for 28 days) on resurgence of alcohol seeking in rats. Resurgence is a type of relapse preparation that consists of three phases: Baseline, Alternative Reinforcement, and Resurgence Testing. During Baseline, target responses produced a dipper of alcohol. During Alternative Reinforcement, target responses were extinguished and responses on a chain produced a chocolate pellet. During Resurgence Testing, responses on the chain were also extinguished and a return to responding on the target lever was indicative of resurgence. Multilevel modeling was used to analyze the effect of nicotine on resurgence. Both the nicotine and saline group showed resurgence of alcohol seeking, but there was no difference in the degree of resurgence across groups. Future directions could involve testing alternative drug delivery techniques

    Distribution of the invasive bryozoan Schizoporella japonica in Great Britain and Ireland and a review of its European distribution

    Get PDF
    The bryozoan Schizoporella japonica Ortmann (1890) was first recorded in European waters in 2010 and has since been reported from further locations in Great Britain (GB) and Norway. This paper provides a new earliest European record for the species from 2009, a first record from Ireland and presence and absence records from a total of 231 marinas and harbours across GB, Ireland, the Isle of Man, France and Portugal. This species is typically associated with human activity, including commercial and recreational vessels, aquaculture equipment, and both wave and tidal energy devices. It has also been observed in the natural environment, fouling rocks and boulders. The species has an extensive but widely discontinuous distribution in GB and Ireland. Although found frequently in marinas and harbours in Scotland, it inhabits only a few sites in England, Wales and Ireland, interspersed with wide gaps that are well documented as genuine absences. This appears to be a rare example of a southward-spreading invasion in GB and Ireland. The species has been reported from the Isle of Man and Norway but has not been found in France or Portugal. In the future we expect S. japonica to spread into suitable sections of the English, Welsh and Irish coasts, and further within Europe. The species’ capability for long-distance saltatory spread and potential for negative impact on native ecosystems and economic activity suggests that S. japonica should now be considered invasive in GB and Ireland. As such, it is recommended that biosecurity procedures alongside effective surveillance and monitoring should be prioritised for regions outside the species’ current distribution

    Computational Modeling of Space Physiology for Informing Spaceflight Countermeasure Design and Predictions of Efficacy

    Get PDF
    MOTIVATION: Spaceflight countermeasures mitigate the harmful effects of the space environment on astronaut health and performance. Exercise has historically been used as a countermeasure to physical deconditioning, and additional countermeasures including lower body negative pressure, blood flow occlusion and artificial gravity are being researched as countermeasures to spaceflight-induced fluid shifts. The NASA Digital Astronaut Project uses computational models of physiological systems to inform countermeasure design and to predict countermeasure efficacy.OVERVIEW: Computational modeling supports the development of the exercise devices that will be flown on NASAs new exploration crew vehicles. Biomechanical modeling is used to inform design requirements to ensure that exercises can be properly performed within the volume allocated for exercise and to determine whether the limited mass, volume and power requirements of the devices will affect biomechanical outcomes. Models of muscle atrophy and bone remodeling can predict device efficacy for protecting musculoskeletal health during long-duration missions. A lumped-parameter whole-body model of the fluids within the body, which includes the blood within the cardiovascular system, the cerebral spinal fluid, interstitial fluid and lymphatic system fluid, estimates compartmental changes in pressure and volume due to gravitational changes. These models simulate fluid shift countermeasure effects and predict the associated changes in tissue strain in areas of physiological interest to aid in predicting countermeasure effectiveness. SIGNIFICANCE: Development and testing of spaceflight countermeasure prototypes are resource-intensive efforts. Computational modeling can supplement this process by performing simulations that reduce the amount of necessary experimental testing. Outcomes of the simulations are often important for the definition of design requirements and the identification of factors essential in ensuring countermeasure efficacy

    Identifying the physical features of marina infrastructure associated with the presence of non-native species in the UK

    Get PDF
    Marine invasive non-native species (NNS) are one of the greatest threats to global marine biodiversity, causing significant economic and social impacts. Marinas are increasingly recognised as key reservoirs for invasive NNS. They provide submersed artificial habitat that unintentionally supports the establishment of NNS introduced from visiting recreational vessels. While ballast water and shipping vectors have been well documented, the role of recreational vessels in spreading NNS has been relatively poorly studied. Identification of the main physical features found within marinas, which relate to the presence of NNS, is important to inform the development of effective biosecurity measures and prevent further spread. Towards this aim, physical features that could influence the presence of NNS were assessed for marinas throughout the UK in July 2013. Thirty-three marine and brackish NNS have been recorded in UK marinas, and of the 88 marinas studied in detail, 83 contained between 1 and 13 NNS. Significant differences in freshwater input, marina entrance width and seawall length were associated with the presence of NNS. Additionally, questionnaires were distributed to marina managers and recreational vessel owners to understand current biosecurity practices and attitudes to recreational vessel biosecurity. The main barriers to biosecurity compliance were cited as cost and time. Further work identifying easily distinguished features of marinas could be used as a proxy to assess risk of invasion. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00227-016-2941-8) contains supplementary material, which is available to authorized users
    corecore