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Spaceflight Countermeasures
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• Exercise

• Lower body negative pressure/blood flow occlusion

• Artificial gravity



Computational Models Used to Inform Spaceflight Countermeasure Design 

and Efficacy Prediction
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Biomechanical Modeling

• Estimation of kinematics, joint torques, 

muscle forces and joint reaction forces

• Data includes: motion data, 

ground reaction forces, device loads 

and subject anthropometrics
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Applications of Biomechanical Modeling

• Comparison of new exploration exercise 

devices to ground-based free weight 

exercises

• Determination of exercise operational volume

• Interface load estimation
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Musculoskeletal Modeling

• Muscle atrophy model

• Models for estimating changes in bone mineral density 

and bone strength

• Prediction of bone fracture probability
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Applications of Musculoskeletal Modeling
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Comparison of pre- and post-flight mean 

bone strengths associated with ISS 

missions to applied loads

Deconditioning factor for 

vehicle load limit design

Predictions of the likelihood of bone fracture

Estimation of countermeasure efficacy

Investigation 

to determine if 

spaceflight 

increased the 

probability of 

the fracture



Cardiovascular and Ocular Modeling

• A human body model of cardiovascular, cerebral spinal, interstitial and lymphatic fluids that provides mean arterial 

pressure (MAP) and intracranial pressure (ICP) in response to gravity-driven fluid shifts

• A lumped eye model that provides intraocular pressure (IOP) and globe and blood volume estimates

• A finite element model of the optic nerve head that includes tissue properties so that tissue strains can be estimated 

when subjected to different MAP, ICP and IOP 
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Applications of Cardiovascular and Ocular Modeling

• Support Visual Impairment and 

Intracranial Pressure (VIIP) syndrome 

research 
– Provide insight on how intraocular pressure and 

aqueous humor volume change during acute 

gravitational changes

– Determine physiological factors that most affect the IOP 

changes

– Explore the hypothesis that the pathology of VIIP is due 

to altered biomechanical loads on ocular tissues, which 

causes remodeling of the ocular tissues

– Determine factors with the largest influence on strain

– Determine characteristics describing the population that 

would experience peak strains in the optic nerve during 

microgravity

• Inform countermeasure design
– Incorporate countermeasures simulation capabilities into 

compartment models to evaluate the effects of 

microgravity and countermeasures on CSF and blood 

flows and pressures
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Conclusions

• Computational modeling can be used to support spaceflight research and countermeasure design

– Develop and perform simulations to test hypotheses

– Determine key factors of the system to aid experimental design

• Computational modeling can be used to perform simulations that reduce the number of required 

experimental tests

– Provide predictions and answers to ‘What If?’ questions

– Perform simulated experimental trials
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Thank You!!

Questions?


