9 research outputs found
SynthÚse et caractérisation de poudres magnétiques pour aimants nanocomposites
The synthesis of nanocomposite permanent magnets composed of a mixture of a hard magnetic phase, with high coercivity, and of a soft magnetic phase, with high magnetization, is one of the possible paths to obtain new rare earth free permanent magnets materials. In this work, the Fe65Co35 phase has been chosen as the soft phase and the SrFe12O19 phase has been chosen as the hard phase. Nanometric powders have been chemically synthesized, adapting existing processes. Fe65Co35 nanoparticles about 10 nm in size were synthesized by the polyol method, in the presence of RuCl3 as nucleating agent. The synthesis of SrFe12O19 nanoparticles was carried out by a so-called âmodified sol-gelâ method developed in this work. This method, which consists of calcination in a NaCl matrix, allows obtaining monodomain nanoparticles that are well dispersed and have magnetic properties superior to those obtained by the conventional sol-gel route. The assembly of hard and soft phases was carried out by a so-called "in-situ" method, for which SrFe12O19 nanoparticles are introduced into the reaction medium during the synthesis of the Fe65Co35 nanoparticles. Magnetic exchange coupling was obtained for nanocomposites with 5% and 10% Fe65Co35 phase contents.La rĂ©alisation dâaimants permanents nanocomposites constituĂ©s dâun mĂ©lange dâune phase magnĂ©tique dure, de coercitivitĂ© Ă©levĂ©e, et dâune phase magnĂ©tique douce, dâaimantation Ă©levĂ©e, est une des possibilitĂ©s dâobtenir de nouveaux matĂ©riaux pour aimants permanents sans terres rares. Dans ce travail, le choix sâest portĂ© sur la phase Fe65Co35 comme phase douce et sur la phase SrFe12O19 comme phase dure. Des poudres nanomĂ©triques ont Ă©tĂ© synthĂ©tisĂ©es par voie chimique, en adaptant des procĂ©dĂ©s existants. Des nanoparticules Fe65Co35 dâune taille dâenviron 10 nm ont Ă©tĂ© synthĂ©tisĂ©es par la mĂ©thode polyol, en prĂ©sence de RuCl3 comme agent nuclĂ©ant. La synthĂšse de nanoparticules SrFe12O19 a Ă©tĂ© effectuĂ©e par une mĂ©thode dite «sol-gel modiïŹĂ©e» mise au point dans le cadre de ce travail. Cette mĂ©thode, qui consiste en une calcination dans une matrice de NaCl, a permis dâobtenir des nanoparticules monodomaines bien dispersĂ©es et possĂ©dant des propriĂ©tĂ©s magnĂ©tiques supĂ©rieures Ă celles obtenues par voie sol-gel classique. Lâassemblage des phases dure et douce a Ă©tĂ© effectuĂ© par mĂ©thode «in-situ», pour laquelle des nanoparticules de SrFe12O19 sont introduites dans le milieu rĂ©actionnel lors de la synthĂšse des nanoparticules de Fe65Co35. Un couplage dâĂ©change magnĂ©tique a Ă©tĂ© obtenu pour les nanocomposites avec des teneurs de 5% et 10% de phase Fe65Co35
Synthesis and characterization of magnetic powers for nanocomposite magnets
La rĂ©alisation dâaimants permanents nanocomposites constituĂ©s dâun mĂ©lange dâune phase magnĂ©tique dure, de coercitivitĂ© Ă©levĂ©e, et dâune phase magnĂ©tique douce, dâaimantation Ă©levĂ©e, est une des possibilitĂ©s dâobtenir de nouveaux matĂ©riaux pour aimants permanents sans terres rares. Dans ce travail, le choix sâest portĂ© sur la phase Fe65Co35 comme phase douce et sur la phase SrFe12O19 comme phase dure. Des poudres nanomĂ©triques ont Ă©tĂ© synthĂ©tisĂ©es par voie chimique, en adaptant des procĂ©dĂ©s existants. Des nanoparticules Fe65Co35 dâune taille dâenviron 10 nm ont Ă©tĂ© synthĂ©tisĂ©es par la mĂ©thode polyol, en prĂ©sence de RuCl3 comme agent nuclĂ©ant. La synthĂšse de nanoparticules SrFe12O19 a Ă©tĂ© effectuĂ©e par une mĂ©thode dite «sol-gel modiïŹĂ©e» mise au point dans le cadre de ce travail. Cette mĂ©thode, qui consiste en une calcination dans une matrice de NaCl, a permis dâobtenir des nanoparticules monodomaines bien dispersĂ©es et possĂ©dant des propriĂ©tĂ©s magnĂ©tiques supĂ©rieures Ă celles obtenues par voie sol-gel classique. Lâassemblage des phases dure et douce a Ă©tĂ© effectuĂ© par mĂ©thode «in-situ», pour laquelle des nanoparticules de SrFe12O19 sont introduites dans le milieu rĂ©actionnel lors de la synthĂšse des nanoparticules de Fe65Co35. Un couplage dâĂ©change magnĂ©tique a Ă©tĂ© obtenu pour les nanocomposites avec des teneurs de 5% et 10% de phase Fe65Co35.The synthesis of nanocomposite permanent magnets composed of a mixture of a hard magnetic phase, with high coercivity, and of a soft magnetic phase, with high magnetization, is one of the possible paths to obtain new rare earth free permanent magnets materials. In this work, the Fe65Co35 phase has been chosen as the soft phase and the SrFe12O19 phase has been chosen as the hard phase. Nanometric powders have been chemically synthesized, adapting existing processes. Fe65Co35 nanoparticles about 10 nm in size were synthesized by the polyol method, in the presence of RuCl3 as nucleating agent. The synthesis of SrFe12O19 nanoparticles was carried out by a so-called âmodified sol-gelâ method developed in this work. This method, which consists of calcination in a NaCl matrix, allows obtaining monodomain nanoparticles that are well dispersed and have magnetic properties superior to those obtained by the conventional sol-gel route. The assembly of hard and soft phases was carried out by a so-called "in-situ" method, for which SrFe12O19 nanoparticles are introduced into the reaction medium during the synthesis of the Fe65Co35 nanoparticles. Magnetic exchange coupling was obtained for nanocomposites with 5% and 10% Fe65Co35 phase contents
SynthÚse et caractérisation de poudres magnétiques pour aimants nanocomposites
The synthesis of nanocomposite permanent magnets composed of a mixture of a hard magnetic phase, with high coercivity, and of a soft magnetic phase, with high magnetization, is one of the possible paths to obtain new rare earth free permanent magnets materials. In this work, the Fe65Co35 phase has been chosen as the soft phase and the SrFe12O19 phase has been chosen as the hard phase. Nanometric powders have been chemically synthesized, adapting existing processes. Fe65Co35 nanoparticles about 10 nm in size were synthesized by the polyol method, in the presence of RuCl3 as nucleating agent. The synthesis of SrFe12O19 nanoparticles was carried out by a so-called âmodified sol-gelâ method developed in this work. This method, which consists of calcination in a NaCl matrix, allows obtaining monodomain nanoparticles that are well dispersed and have magnetic properties superior to those obtained by the conventional sol-gel route. The assembly of hard and soft phases was carried out by a so-called "in-situ" method, for which SrFe12O19 nanoparticles are introduced into the reaction medium during the synthesis of the Fe65Co35 nanoparticles. Magnetic exchange coupling was obtained for nanocomposites with 5% and 10% Fe65Co35 phase contents.La rĂ©alisation dâaimants permanents nanocomposites constituĂ©s dâun mĂ©lange dâune phase magnĂ©tique dure, de coercitivitĂ© Ă©levĂ©e, et dâune phase magnĂ©tique douce, dâaimantation Ă©levĂ©e, est une des possibilitĂ©s dâobtenir de nouveaux matĂ©riaux pour aimants permanents sans terres rares. Dans ce travail, le choix sâest portĂ© sur la phase Fe65Co35 comme phase douce et sur la phase SrFe12O19 comme phase dure. Des poudres nanomĂ©triques ont Ă©tĂ© synthĂ©tisĂ©es par voie chimique, en adaptant des procĂ©dĂ©s existants. Des nanoparticules Fe65Co35 dâune taille dâenviron 10 nm ont Ă©tĂ© synthĂ©tisĂ©es par la mĂ©thode polyol, en prĂ©sence de RuCl3 comme agent nuclĂ©ant. La synthĂšse de nanoparticules SrFe12O19 a Ă©tĂ© effectuĂ©e par une mĂ©thode dite «sol-gel modiïŹĂ©e» mise au point dans le cadre de ce travail. Cette mĂ©thode, qui consiste en une calcination dans une matrice de NaCl, a permis dâobtenir des nanoparticules monodomaines bien dispersĂ©es et possĂ©dant des propriĂ©tĂ©s magnĂ©tiques supĂ©rieures Ă celles obtenues par voie sol-gel classique. Lâassemblage des phases dure et douce a Ă©tĂ© effectuĂ© par mĂ©thode «in-situ», pour laquelle des nanoparticules de SrFe12O19 sont introduites dans le milieu rĂ©actionnel lors de la synthĂšse des nanoparticules de Fe65Co35. Un couplage dâĂ©change magnĂ©tique a Ă©tĂ© obtenu pour les nanocomposites avec des teneurs de 5% et 10% de phase Fe65Co35
Fast synthesis and magnetocaloric properties of La(Fe, Co, Si)13 compounds and their hydrides.
International audienc
Fast synthesis and magnetocaloric properties of La(Fe, Co, Si)13 compounds and their hydrides.
International audienc
Visualizing the Flexibility of RHO Nanozeolite: Experiment and Modeling
International audienc
Efficient Promoters and Reaction Paths in the CO 2 Hydrogenation to Light Olefins over Zirconia-Supported Iron Catalysts
International audienc
Efficient Promoters and Reaction Paths in the CO 2 Hydrogenation to Light Olefins over Zirconia-Supported Iron Catalysts
International audienc
Efficient Promoters and Reaction Paths in the CO<sub>2</sub>Hydrogenation to Light Olefins over Zirconia-Supported Iron Catalysts
Hydrogenation into light olefins is an attractive strategy for CO2fixation into chemicals. In this article, high throughput experimentation and extended characterization were employed to identify the most efficient promoters and to elucidate structure-performance correlations and reaction paths in the CO2hydrogenation to light olefins over zirconia-supported iron catalysts. K, Cs, Ba, Ce, Nb, Mo, Mn, Cu, Zn, Ga, In, Sn, Sb, Bi, and V were added in the same molar concentrations to zirconia-supported iron catalyst and evaluated as promoters. The CO2hydrogenation proceeds via intermediate formation of CO followed by surface polymerization. Over the iron catalysts containing alkaline promoters, initially higher selectivity to light olefins shows a significant decrease with the CO2conversion, because of further surface polymerization and the formation of longer chain hydrocarbons. A relatively low selectivity to light olefins over the promoted catalysts, without potassium, is not much affected by the CO2conversion. Essential characteristics of iron catalysts to obtain a higher yield of light olefins seem to be a higher iron dispersion, a higher extent of carbidization, and optimized basicity. The strongest promoting effect is reported for the alkaline metals. A further increase in the light olefin selectivity is observed after simultaneous addition of potassium with copper, molybdenum, gallium, or cerium.Instrumenten groe