4 research outputs found

    Single-lens mass measurement in the high-magnification microlensing event Gaia 19bld located in the Galactic disc

    Get PDF
    CONTEXT: Microlensing provides a unique opportunity to detect non-luminous objects. In the rare cases that the Einstein radius Ξ_{E} and microlensing parallax π_{E} can be measured, it is possible to determine the mass of the lens. With technological advances in both ground- and space-based observatories, astrometric and interferometric measurements are becoming viable, which can lead to the more routine determination of Ξ_{E} and, if the microlensing parallax is also measured, the mass of the lens. AIMS: We present the photometric analysis of Gaia19bld, a high-magnification (A ≈ 60) microlensing event located in the southern Galactic plane, which exhibited finite source and microlensing parallax effects. Due to a prompt detection by the Gaia satellite and the very high brightness of I = 9.05 mag at the peak, it was possible to collect a complete and unique set of multi-channel follow-up observations, which allowed us to determine all parameters vital for the characterisation of the lens and the source in the microlensing event. METHODS: Gaia19bld was discovered by the Gaia satellite and was subsequently intensively followed up with a network of ground-based observatories and the Spitzer Space Telescope. We collected multiple high-resolution spectra with Very Large Telescope (VLT)/X-shooter to characterise the source star. The event was also observed with VLT Interferometer (VLTI)/PIONIER during the peak. Here we focus on the photometric observations and model the light curve composed of data from Gaia, Spitzer, and multiple optical, ground-based observatories. We find the best-fitting solution with parallax and finite source effects. We derived the limit on the luminosity of the lens based on the blended light model and spectroscopic distance. RESULTS: We compute the mass of the lens to be 1.13 ± 0.03 M_{⊙} and derive its distance to be 5.52_{−0.64}^{+0.35} kpc. The lens is likely a main sequence star, however its true nature has yet to be verified by future high-resolution observations. Our results are consistent with interferometric measurements of the angular Einstein radius, emphasising that interferometry can be a new channel for determining the masses of objects that would otherwise remain undetectable, including stellar-mass black holes

    Single-lens mass measurement in the high-magnification microlensing event Gaia19bld located in the Galactic disc

    Get PDF
    This work was supported from the Polish NCN grants: Preludium No. 2017/25/N/ST9/01253, Harmonia No. 2018/30/M/ST9/00311, MNiSW grant DIR/WK/2018/12, Daina No. 2017/27/L/ST9/03221, and by the Research Council of Lithuania, grant No. S-LL-19-2. The OGLE project has received funding from the NCN grant MAESTRO 2014/14/A/ST9/00121 to AU. We acknowledge the European Commission’s H2020 OPTICON grant No. 730890. YT acknowledges the support of DFG priority program SPP 1992 “Exploring the Diversity of Extrasolar Planets” (WA 1047/11-1). EB and RS gratefully acknowledge support from NASA grant 80NSSC19K0291. Work by AG was supported by JPL grant 1500811. Work by JCY was supported by JPL grant 1571564. SJF thanks Telescope Live for access to their telescope network. NN acknowledges the support of Data Science Research Center, Chiang Mai University. FOE acknowledges the support from the FONDECYT grant nr. 1201223. MK acknowledges the support from the NCN grant No. 2017/27/B/ST9/02727.Context. Microlensing provides a unique opportunity to detect non-luminous objects. In the rare cases that the Einstein radius ΞE and microlensing parallax πE can be measured, it is possible to determine the mass of the lens. With technological advances in both ground- and space-based observatories, astrometric and interferometric measurements are becoming viable, which can lead to the more routine determination of ΞE and, if the microlensing parallax is also measured, the mass of the lens.  Aims. We present the photometric analysis of Gaia19bld, a high-magnification (A approximate to 60) microlensing event located in the southern Galactic plane, which exhibited finite source and microlensing parallax effects. Due to a prompt detection by the Gaia satellite and the very high brightness of I = 9.05 mag at the peak, it was possible to collect a complete and unique set of multi-channel follow-up observations, which allowed us to determine all parameters vital for the characterisation of the lens and the source in the microlensing event.  Methods. Gaia19bld was discovered by the Gaia satellite and was subsequently intensively followed up with a network of ground-based observatories and the Spitzer Space Telescope. We collected multiple high-resolution spectra with Very Large Telescope (VLT)/X-shooter to characterise the source star. The event was also observed with VLT Interferometer (VLTI)/PIONIER during the peak. Here we focus on the photometric observations and model the light curve composed of data from Gaia, Spitzer, and multiple optical, ground-based observatories. We find the best-fitting solution with parallax and finite source effects. We derived the limit on the luminosity of the lens based on the blended light model and spectroscopic distance.  Results. We compute the mass of the lens to be 1.13 ± 0.03 M⊙ and derive its distance to be 5.52-0.64+0.35 kpc. The lens is likely a main sequence star, however its true nature has yet to be verified by future high-resolution observations. Our results are consistent with interferometric measurements of the angular Einstein radius, emphasising that interferometry can be a new channel for determining the masses of objects that would otherwise remain undetectable, including stellar-mass black holes.Publisher PDFPeer reviewe

    Earth through the looking glass: how frequently are we detected by other civilizations through photometric microlensing?

    No full text
    International audienceMicrolensing is proving to be one of the best techniques to detect distant, low-mass planets around the most common stars in the Galaxy. In principle, Earth's microlensing signal could offer the chance for other technological civilizations to find the Earth across Galactic distances. We consider the photometric microlensing signal of Earth to other potential technological civilizations and dub the regions of our Galaxy from which Earth's photometric microlensing signal is most readily observable as the 'Earth microlensing zone' (EMZ). The EMZ can be thought of as the microlensing analogue of the Earth Transit Zone (ETZ) from where observers see Earth transit the Sun. Just as for the ETZ, the EMZ could represent a game-theoretic Schelling point for targeted searches for extra-terrestrial intelligence (SETI). To compute the EMZ, we use the Gaia DR2 catalogue with magnitude G < 20 to generate Earth microlensing probability and detection rate maps to other observers. While our Solar system is a multiplanet system, we show that Earth's photometric microlensing signature is almost always well approximated by a binary lens assumption. We then show that the Earth is in fact well hidden to observers with technology comparable to our own. Specifically, even if observers are located around every Gaia DR2 star with G < 20, we expect photometric microlensing signatures from the Earth to be observable on average only tens per year by any of them. In addition, the EMZs overlap with the ETZ near the Galactic Centres which could be the main areas for future SETI searches
    corecore