412 research outputs found

    Experimental search for the decay mode K_L -> pi^0 gamma e^+ e^-

    Full text link
    We report on results of a search for the decay mode K_L -> pi^0 gamma e^+ e^- conducted by the E162 experiment at KEK. We observed no events and set a 90% confidence level upper limit of Br(K_L -> pi^0 gamma e^+ e^-)< 7.1x10^{-7} for its branching ratio. This is the first published experimental result on this decay mode.Comment: 10 pages, 4 figures, submitted to Physics Letters

    Wave effect in gravitational lensing by a cosmic string

    Get PDF
    The wave effect in the gravitational lensing phenomenon by a straight cosmic string is investigated. The interference pattern is expressed in terms of a simple formula. We demonstrate that modulations of the interfered wave amplitude can be a unique signature of the wave effect. We briefly mention a possible chance of detecting the wave effect in future gravitational wave observatories.Comment: 4 pages, 1 figur

    The Polonyi Problem and Upper bound on Inflation Scale in Supergravity

    Get PDF
    We reconsider the Polonyi problem in gravity-mediation models for supersymmetry (SUSY) breaking. It has been argued that there is no problem in the dynamical SUSY breaking scenarios, since the Polonyi field acquires a sufficiently large mass of the order of the dynamical SUSY-breaking scale Lamada_{SUSY}. However, we find that a linear term of the Polonyi field in the Kahler potential brings us back to the Polonyi problem, unless the inflation scale is sufficiently low, H_{inf} < 10^{8} GeV, or the reheating temperature is extremely low, T_{R} < 100 GeV. Here, this Polonyi problem is more serious than the original one, since the Polonyi field mainly decays into a pair of gravitinos.Comment: 17 pages, 1 figure, minor corrections, published versio

    How to increase and maintain high immunization coverage: Vaccination Demand Resilience (VDR) framework

    Get PDF
    Background: Resilience in vaccination demand is ever more critical as the COVID-19 pandemic has increased our understanding of the importance of vaccines on health and well-being. Yet timid demand for COVID-19 vaccines where available and reduced uptake of routine immunizations globally further raise the urgent need to build vaccination resilience. We demonstrate the complexity of vaccination demand and resilience in a framework where relevant dimensions are intertwined, fluid, and contextual. Methods: We developed the Vaccination Demand Resilience (VDR) framework based on a literature review on vaccination demand and expert consultation. The matrix framework builds on three main axes: 1) vaccination attitudes and beliefs; 2) vaccination seeking behavior; and 3) vaccination status. The matrix generated eight quadrants, which can help explain people's levels of vaccination demand and resilience. We selected four scenarios as examples to demonstrate different interventions that could move people across quadrants and build vaccination resilience. Results: Incongruence between individuals’ attitudes and beliefs, vaccination behavior, and vaccination status can arise. For example, an individual can be vaccinated due to mandates but reject vaccination benefits and otherwise avoid seeking vaccination. Such incongruence could be altered by interventions to build resilience in vaccination demand. These interventions include information, education and communication to change individuals' vaccination attitudes and beliefs, incentive programs and reminder-recalls to facilitate vaccination seeking, or by strengthening healthcare provider communications to reduce missed opportunities. Conclusions: Vaccination decision-making is complex. Individuals can be vaccinated without necessarily accepting the benefits of vaccination or seeking vaccination, threatening resilience in vaccination demand. The VDR framework can provide a useful lens for program managers and policy makers considering interventions and policies to improve vaccination resilience. This would help build and sustain confidence and demand for vaccinations, and help to continue to prevent disease, disability, and death from vaccine-preventable diseases

    Decaying Dark Matter Baryons in a Composite Messenger Model

    Get PDF
    A baryonic bound state with a mass of O(100) TeV, which is composed of strongly interacting messenger quarks in the low scale gauge mediation, can naturally be the cold dark matter. Interestingly, we find that such a baryonic dark matter is generically metastable, and the decay of this dark matter can naturally explain the anomalous positron flux recently observed by the PAMELA collaboration.Comment: 10 pages, 2 figures. v2: minor changes, note adde

    Three-Point Correlations in Weak Lensing Surveys: Model Predictions and Applications

    Full text link
    We use the halo model of clustering to compute two- and three-point correlation functions for weak lensing, and apply them in a new statistical technique to measure properties of massive halos. We present analytical results on the eight shear three-point correlation functions constructed using combination of the two shear components at each vertex of a triangle. We compare the amplitude and configuration dependence of the functions with ray-tracing simulations and find excellent agreement for different scales and models. These results are promising, since shear statistics are easier to measure than the convergence. In addition, the symmetry properties of the shear three-point functions provide a new and precise way of disentangling the lensing E-mode from the B-mode due to possible systematic errors. We develop an approach based on correlation functions to measure the properties of galaxy-group and cluster halos from lensing surveys. Shear correlations on small scales arise from the lensing matter within halos of mass M > 10^13 solar masses. Thus the measurement of two- and three-point correlations can be used to extract information on halo density profiles, primarily the inner slope and halo concentration. We demonstrate the feasibility of such an analysis for forthcoming surveys. We include covariances in the correlation functions due to sample variance and intrinsic ellipticity noise to show that 10% accuracy on profile parameters is achievable with surveys like the CFHT Legacy survey, and significantly better with future surveys. Our statistical approach is complementary to the standard approach of identifying individual objects in survey data and measuring their properties.Comment: 30 pages, 21 figures. Corrected typos in equations (23) and (28). Matches version for publication in MNRA

    Hamiltonian Study of Improved U(1U(1 Lattice Gauge Theory in Three Dimensions

    Full text link
    A comprehensive analysis of the Symanzik improved anisotropic three-dimensional U(1) lattice gauge theory in the Hamiltonian limit is made. Monte Carlo techniques are used to obtain numerical results for the static potential, ratio of the renormalized and bare anisotropies, the string tension, lowest glueball masses and the mass ratio. Evidence that rotational symmetry is established more accurately for the Symanzik improved anisotropic action is presented. The discretization errors in the static potential and the renormalization of the bare anisotropy are found to be only a few percent compared to errors of about 20-25% for the unimproved gauge action. Evidence of scaling in the string tension, antisymmetric mass gap and the mass ratio is observed in the weak coupling region and the behaviour is tested against analytic and numerical results obtained in various other Hamiltonian studies of the theory. We find that more accurate determination of the scaling coefficients of the string tension and the antisymmetric mass gap has been achieved, and the agreement with various other Hamiltonian studies of the theory is excellent. The improved action is found to give faster convergence to the continuum limit. Very clear evidence is obtained that in the continuum limit the glueball ratio MS/MAM_{S}/M_{A} approaches exactly 2, as expected in a theory of free, massive bosons.Comment: 13 pages, 15 figures, submitted to Phys. Rev.

    Limits on the gravity wave contribution to microwave anisotropies

    Get PDF
    We present limits on the fraction of large angle microwave anisotropies which could come from tensor perturbations. We use the COBE results as well as smaller scale CMB observations, measurements of galaxy correlations, abundances of galaxy clusters, and Lyman alpha absorption cloud statistics. Our aim is to provide conservative limits on the tensor-to-scalar ratio for standard inflationary models. For power-law inflation, for example, we find T/S<0.52 at 95% confidence, with a similar constraint for phi^p potentials. However, for models with tensor amplitude unrelated to the scalar spectral index it is still currently possible to have T/S>1.Comment: 23 pages, 7 figures, accepted for publication in Phys. Rev. D. Calculations extended to blue spectral index, Fig. 6 added, discussion of results expande
    • 

    corecore