458 research outputs found

    Spatially Resolved Spectroscopy of Sub-AU-Sized Regions of T Tauri and Herbig Ae/Be Disks

    Get PDF
    We present spatially resolved near-IR spectroscopic observations of 15 young stars. Using a grism spectrometer behind the Keck Interferometer, we obtained an angular resolution of a few milli-arcseconds and a spectral resolution of 230, enabling probes of both gas and dust in the inner disks surrounding the target stars. We find that the angular size of the near-IR emission typically increases with wavelength, indicating hot, presumably gaseous material within the dust sublimation radius. Our data also clearly indicate Brackett-gamma emission arising from hot hydrogen gas, and suggest the presence of water vapor and carbon monoxide gas in the inner disks of several objects. This gaseous emission is more compact than the dust continuum emission in all cases. We construct simple physical models of the inner disk and fit them to our data to constrain the spatial distribution and temperature of dust and gas emission components.Comment: 40 pages, 8 figures. Accepted for publication in Ap

    High-resolution Spectroscopy of [Ne II] Emission from TW Hya

    Full text link
    We present high-resolution echelle spectra of [Ne II] 12.81 micron emission from the classical T Tauri star (CTTS) TW Hya obtained with MICHELLE on Gemini North. The line is centered at the stellar radial velocity and has an intrinsic FWHM of 21\pm 4 km/s. The line width is broader than other narrow emission lines typically associated with the disk around TW Hya. If formed in a disk, the line broadening could result from turbulence in a warm disk atmosphere, Keplerian rotation at an average distance of 0.1 AU from the star, or a photoevaporative flow from the optically-thin region of the disk. We place upper limits on the [Ne II] emission flux from the CTTSs DP Tau and BP Tau.Comment: Accepted by ApJ. 18 pages, including 2 figures and 2 table

    High Resolution K-band Spectroscopy of MWC 480 and V1331 Cyg

    Full text link
    We present high resolution (R=25,000-35,000) K-band spectroscopy of two young stars, MWC 480 and V1331 Cyg. Earlier spectrally dispersed (R=230) interferometric observations of MWC 480 indicated the presence of an excess continuum emission interior to the dust sublimation radius, with a spectral shape that was interpreted as evidence for hot water emission from the inner disk of MWC 480. Our spectrum of V1331 Cyg reveals strong emission from CO and hot water vapor, likely arising in a circumstellar disk. In comparison, our spectrum of MWC 480 appears mostly featureless. We discuss possible ways in which strong water emission from MWC 480 might go undetected in our data. If strong water emission is in fact absent from the inner disk, as our data suggest, the continuum excess interior to the dust sublimation radius that is detected in the interferometric data must have another origin. We discuss possible physical origins for the continuum excess.Comment: 29 pages, 5 figures, to appear in Ap

    High Angular Resolution Mid-infrared Imaging of Young Stars in Orion BN/KL

    Full text link
    We present Keck LWS images of the Orion BN/KL star forming region obtained in the first multi-wavelength study to have 0.3-0.5" resolution from 4.7 to 22 microns. The young stellar objects designated infrared source-n and radio source-I are believed to dominate the BN/KL region. We have detected extended emission from a probable accretion disk around source-n but infer a stellar luminosity on the order of only 2000 Lsun. Although source-I is believed to be more luminous, we do not detect an infrared counterpart even at the longest wavelengths. However, we resolve the closeby infrared source, IRc2, into an arc of knots ~1000 AU long at all wavelengths. Although the physical relation of source-I to IRc2 remains ambiguous, we suggest these sources mark a high density core (10^7-10^8 pc^-3 over 1000 AU) within the larger BN/KL star forming cluster. The high density may be a consequence of the core being young and heavily embedded. We suggest the energetics of the BN/KL region may be dominated by this cluster core rather than one or two individual sources.Comment: 13 pages including 3 color figures. Accepted to The Astrophysical Journal Letters pending slight reduction in length. High resolution figures (jpeg) may be found at http://cfa-www.harvard.edu/~lincoln/keck.bnkl.midir.ppr

    Red Quasars and Quasar Evolution: the Case of BALQSO FIRST J155633.8+351758

    Get PDF
    We present the first near-IR spectroscopy of the z=1.5 radio-loud BALQSO FIRST J155633.8+351758. Both the Balmer decrement and the slope of the rest-frame UV-optical continuum independently suggest a modest amount of extinction along the line of sight to the BLR (E(B-V)~0.5 for SMC-type screen extinction at the QSO redshift). The implied gas column density along the line of sight is much less than is implied by the weak X-ray flux of the object, suggesting that either the BLR and BAL region have a low dust-to-gas ratio, or that the rest-frame optical light encounters significantly lower mean column density lines of sight than the X-ray emission. From the rest-frame UV-optical spectrum, we are able to constrain the stellar mass content of the system. Comparing the maximal stellar mass with the black hole mass estimated from the bolometric luminosity of the QSO, we find that the ratio of the black hole to stellar mass may be comparable to the Magorrian value, which would imply that the Magorrian relation is already in place at z=1.5. However, multiple factors favor a much larger black hole to stellar mass ratio. This would imply that if the Magorrian relation characterizes the late history of QSOs, and the situation observed for F1556+3517 is typical of the early evolutionary history of QSOs, central black hole masses develop more rapidly than bulge masses. [ABRIDGED]Comment: 23 pages, 4 embedded postscript figures; Accepted for publication in The Astronomical Journal, December 200
    • …
    corecore