29 research outputs found

    Local application of osteoprotegerin-chitosan gel in critical-sized defects in a rabbit model

    Get PDF
    Background Osteoprotegerin (OPG) is used for the systemic treatment of bone diseases, although it has many side effects. The aim of this study was to investigate a newly formulated OPG-chitosan gel for local application to repair bone defects. Recent studies have reported that immunodetection of osteopontin (OPN) and osteocalcin (OC) can be used to characterise osteogenesis and new bone formation. Methods The osteogenic potential of the OPG-chitosan gel was evaluated in rabbits. Critical-sized defects were created in the calvarial bone, which were either left unfilled (control; group I), or filled with chitosan gel (group II) or OPG-chitosan gel (group III), with rabbits sacrificed at 6 and 12 weeks. Bone samples from the surgical area were decalcified and treated with routine histological and immunohistochemical protocols using OC, OPN, and cathepsin K (osteoclast marker) antibodies. The toxicity of the OPG-chitosan gel was evaluated by biochemical assays (liver and kidney function tests). Results The mean bone growth in defects filled with the OPG-chitosan gel was significantly higher than those filled with the chitosan gel or the unfilled group (p < 0.05). At 6 and 12 weeks, the highest levels of OC and OPN markers were found in the OPG-chitosan gel group, followed by the chitosan gel group. The number of osteoclasts in the OPG-chitosan gel group was lower than the other groups. The results of the liver and kidney functional tests indicated no signs of harmful systemic effects of treatment. In conclusion, the OPG-chitosan gel has many characteristics that make it suitable for bone repair and regeneration, highlighting its potential benefits for tissue engineering applications

    Two new xanthones from Artocarpus obtusus

    Get PDF
    Two new xanthones, pyranocycloartobiloxanthone A (1) and dihydroartoindonesianin C (2), were isolated from the stem bark of Artocarpus obtusus Jarrett by chromatographic separation. Their structures were determined by using spectroscopic methods and comparison with known related compounds. Pyranocycloartobiloxanthone A (1) showed strong free radical scavenging activity by using DPPH assay as well as cytotoxicity towards K562, HL-60, and MCF7 cell lines

    Antibacterial activity of ethanolic leaf extract of Aquilaria malaccensis against multi-drug-resistant Gram-negative pathogen

    Get PDF
    The rapid emergence of resistant Gram-negative bacteria and the limited discovery of novel antibiotic is a global healthcare challenge. Many medicinal plants with potent bioactivities have been developed for the treatment of bacterial infections. Aquilaria malaccensis exhibits wide applications from perfumes and aromatic foods ingredients and great potential in medicines. In this study, crude leaf extract of A. malaccensis was evaluated for its antibacterial activity against several pathogenic Gram-negative bacteria. The leaves were processed and extracted by Soxhlet method using ethanol as the solvent. The antibacterial activity of the crude extract was tested by disc diffusion method, minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) against Acinetobacter baumannii (ATCC 19606), Klebsiella pneumoniae (ATCC 10031 and ATCC 700603) and Escherichia coli (ATCC 1129). Using the optimized method, the Soxhlet extract produced a yield of 178.41 mg/g. Treatment of the extract at 200 mg/mL displayed the largest inhibition zones of 14.0 mm and 9.7 mm against A. baumannii and K. pneumoniae ATCC 10031, respectively. In contrast, against E. coli and K. pneumoniae ATCC 700603, smaller zones of inhibitions of 3.3 mm were demonstrated. The MIC values of the extract were 32 mg/mL against A. baumannii and K. pneumoniae ATCC 10031 and 64 mg/mL against E. coli and K. pneumoniae ATCC 700603. The MBC values of the extract were consistent with the MIC values for all the bacteria investigated. Overall, this study was the first to show antibacterial activity of A. malaccensis leaves extract particularly against A. baumannii and K. pneumoniae and potentially develop for the treatment of resistant bacteria

    α-Mangostin from cratoxylum arborescens (Vahl) blume demonstrates anti-ulcerogenic property : a mechanistic study

    Get PDF
    Cratoxylum arborescens (Vahl) Blume is an Asian herbal medicine with versatile ethnobiological properties including treatment of gastric ulcer. This study evaluated the antiulcerogenic mechanism(s) of α-mangostin (AM) in a rat model of ulcer. AM is a prenylated xanthone derived through biologically guided fractionation of C. arborescens. Rats were orally pretreated with AM and subsequently exposed to acute gastric lesions induced by ethanol. Following treatment, ulcer index, gastric juice acidity, mucus content, histological and immunohistochemical analyses, glutathione (GSH), malondialdehyde (MDA), nitric oxide (NO), and nonprotein sulfhydryl groups (NP-SH) were evaluated. The anti-Helicobacter pylori, cyclooxygenase-2 (COX-2) inhibitory effect, and antioxidant activity of AM were also investigated in vitro. AM (10 and 30 mg/kg) inhibited significantly (P < 0.05) ethanol-induced gastric lesions by 66.04% and 74.39 %, respectively. The compound induces the expression of Hsp70, restores GSH levels, decreases lipid peroxidation, and inhibits COX-2 activity. The minimum inhibitory concentration (MIC) of AM showed an effective in vitro anti-H. pylori activity. The efficacy of the AM was accomplished safely without presenting any toxicological parameters. The results of the present study indicate that the antioxidant properties and the potent anti-H. pylori, in addition to activation of Hsp70 protein, may contribute to the gastroprotective activity of α-mangostin

    Local application of osteoprotegerin-chitosan gel in critical-sized defects in a rabbit model

    No full text
    Background Osteoprotegerin (OPG) is used for the systemic treatment of bone diseases, although it has many side effects. The aim of this study was to investigate a newly formulated OPG-chitosan gel for local application to repair bone defects. Recent studies have reported that immunodetection of osteopontin (OPN) and osteocalcin (OC) can be used to characterise osteogenesis and new bone formation. Methods The osteogenic potential of the OPG-chitosan gel was evaluated in rabbits. Critical-sized defects were created in the calvarial bone, which were either left unfilled (control; group I), or filled with chitosan gel (group II) or OPG-chitosan gel (group III), with rabbits sacrificed at 6 and 12 weeks. Bone samples from the surgical area were decalcified and treated with routine histological and immunohistochemical protocols using OC, OPN, and cathepsin K (osteoclast marker) antibodies. The toxicity of the OPG-chitosan gel was evaluated by biochemical assays (liver and kidney function tests). Results The mean bone growth in defects filled with the OPG-chitosan gel was significantly higher than those filled with the chitosan gel or the unfilled group (p < 0.05). At 6 and 12 weeks, the highest levels of OC and OPN markers were found in the OPG-chitosan gel group, followed by the chitosan gel group. The number of osteoclasts in the OPG-chitosan gel group was lower than the other groups. The results of the liver and kidney functional tests indicated no signs of harmful systemic effects of treatment. In conclusion, the OPG-chitosan gel has many characteristics that make it suitable for bone repair and regeneration, highlighting its potential benefits for tissue engineering applications

    In vitro evaluation of osteoprotegerin in chitosan for potential bone defect applications

    No full text
    Background The receptor activator of nuclear factor kappa-B (RANK)/RANK ligand/osteoprotegerin (OPG) system plays a critical role in bone remodelling by regulating osteoclast formation and activity. OPG has been used systemically in the treatment of bone diseases. In searching for more effective and safer treatment for bone diseases, we investigated newly formulated OPG-chitosan complexes, which is prepared as a local application for its osteogenic potential to remediate bone defects. Methods We examined high, medium and low molecular weights of chitosan combined with OPG. The cytotoxicity of OPG in chitosan and its proliferation in vitro was evaluated using normal, human periodontal ligament (NHPL) fibroblasts in 2D and 3D cell culture. The cytotoxicity of these combinations was compared by measuring cell survival with a tetrazolium salt reduction (MTT) assay and AlamarBlue assay. The cellular morphological changes were observed under an inverted microscope. A propidium iodide and acridine orange double-staining assay was used to evaluate the morphology and quantify the viable and nonviable cells. The expression level of osteopontin and osteocalcin protein in treated normal human osteoblast cells was evaluated by using Western blot. Results The results demonstrated that OPG in combination with chitosan was non-toxic, and OPG combined with low molecular weight chitosan has the most significant effect on NHPL fibroblasts and stimulates proliferation of cells over the period of treatment

    Synthesis of Phthalimide Imine Derivatives as a Potential Anticancer Agent

    No full text
    The outstanding evidence of phthalimide pharmacophore in securing enhanced biological activities had encouraged further research and development into phthalimide-based derivatives as potential new drugs. In this study, phthalimide core was hybridized with aldehydes giving integrated imines displaying different types of functionalities and at alternating positions. The resulting compounds, therefore, provide an innovative window to explore possible differential biological effects as antioxidants and anticancer agents. A total of sixteen compounds were synthesized, and each was verified by FT-IR, H NMR, C NMR, and MS characterization. Herein, a facile single-step synthesis method was employed substituting the conventional two-step chemical production routes. Among the sixteen tested compounds, the H7 compound with hydroxyl phenolic group has shown an eminent antioxidant activity with a 19.52% decrease to the IC50 value compared to that of the control standard BHT antioxidant. On the other hand, the halogenated H6 Schiff base structure was successful in securing effective cancer inhibition to both colon and breast cancer cell lines, while maintaining selective action toward normal tissues. Results have collectively indicated the importance and impactful effects of functional groups position and types within similar basic structures, in directing different biological outcomes

    ­Chemical profiling and biological activity of Peperomia blanda (Jacq.) Kunth

    No full text
    Background. Peperomia belongs to the family of Piperaceae. It has different uses in folk medicine and contains rare compounds that have led to increased interest in this genus. Peperomia blanda (Jacq.) Kunth is used as an injury disinfectant by Yemeni people. In addition, the majority of Yemen's population still depend on the traditional remedy for serious diseases such as cancer, inflammation and infection. Currently, there is a deficiency of scientific evidence with regards to the medicinal plants from Yemen. Therefore, this study was performed to assess the chemical profile and in vitro antioxidant and cytotoxic activities of P. blanda. Methods. Chemical profiling of P. blanda was carried out using gas chromatography mass spectrometry (GCMS) followed by isolation of bioactive compounds by column chromatography. DPPH• and FRAP assays were used to evaluate antioxidant activity and the MTT assay was performed to estimate the cytotoxicity activity against three cancer cell lines, namely MCF-7, HL-60 and WEHI-3, and three normal cell lines, MCF10A, WRL-68 and HDFa. Results. X-ray crystallographic data for peperomin A is reported for the first time here and N, N0-diphenethyloxamide was isolated for the first time from Peperomia blanda. Methanol and dichloromethane extracts showed high radical scavenging activity with an IC50 of 36.81 ± 0.09 μg/mL, followed by the dichloromethane extract at 61.78 ± 0.02 μg/mL, whereas the weak ferric reducing activity of P. blanda extracts ranging from 162.2 ± 0.80 to 381.5 ± 1.31 μg/mL were recorded. In addition, petroleum ether crude extract exhibited the highest cytotoxic activity against all the tested cancer cell lines with IC50 values of 9.54 ± 0.30, 4.30 ± 0.90 and 5.39 ± 0.34 μg/mL, respectively. Peperomin A and the isolated mixture of phytosterol (stigmasterol and β-sitosterol) exhibited cytotoxic activity against MCF-7 and WE-HI cell lines with an IC50 of (5.58 ± 0.47, 4.62 ± 0.03 μg/mL) and (8.94 ± 0.05, 9.84 ± 0.61 μg/mL), respectively, compared to a standard drug, taxol, that has IC50 values of 3.56 ± 0.34 and 1.90 ± 0.9 μg/mL, respectively. Conclusion. The activities of P. blanda extracts and isolated compounds recorded in this study underlines the potential that makes this plant a valuable source for further study on anticancer and antioxidant activities

    Ultrastructural Study on the Antibacterial Activity of Artonin E versus Streptomycin against Staphylococcus aureus Strains

    No full text
    Staphylococci are facultative anaerobes, perfectly spherical un-encapsulated cocci, with a diameter not exceeding 1 micrometer in diameter. Staphylococcus aureus are generally harmless and remain confined to the skin unless they burrow deep into the body, causing life-threatening infections in bones, joints, bloodstream, heart valves and lungs. Among the 20 medically important staphylococci species, Staphylococcus aureus is one of the emerging human pathogens. Streptomycin had its highest potency against Staphylococcus infections despite the likelihood of getting a resistant type of staphylococcus strains. Methicillin-resistant S. aureus (MRSA) is the persister type of Staphylococcus aureus and was evolved after decades of antibiotic misuse. Inadequate penetration of the antibiotic is one of the principal factors related to success/failure of the therapy. The active drug needs to reach the bacteria at concentrations necessary to kill or suppress the pathogen's growth. In turn the effectiveness of the treatment relied on the physical properties of Staphylococcus aureus. Thus understanding the cell integrity, shape and roughness is crucial to the overall influence of the therapeutic agent on S. aureus of different origins. Hence our experiments were designed to clarify ultrastructural changes of S. aureus treated with streptomycin (synthetic compound) in comparison to artonin E (natural compound). In addition to the standard in vitro microbial techniques, we used transmission electron microscopy to study the disrupted cell architecture under antibacterial regimen and we correlate this with scanning electron microscopy (SEM) to compare results of both techniques
    corecore