17 research outputs found

    Cryptophane Derivatives as Gas Sensors and Hyperpolarized Xenon-129 Biosensors

    Get PDF
    ABSTRACT CRYPTOPHANE DERIVATIVES AS GAS SENSORS AND HYPERPOLARIZED XENON-129 BIOSENSORS Najat S. Khan Professor Ivan J. Dmochowski This thesis describes the progress in the development of cryptophanes for three different applications: encapsulation of noble gases, 129Xe NMR biosensing for cancer detection, and the construction of molecular devices. A new water-soluble organic host molecule, tris-(triazole ethylamine) cryptophane, was synthesized for noble gas detection. This host was found to bind xenon with the highest affinity to date (KA = 42,000 ± 2,000 M-1 at 293 K). The same host was employed in the development of a radiometric assay for measuring the association constant of radon binding to a discrete molecular species, KA = 49,000 ± 12,000 M-1 at 293 K. For cancer detection by hyperpolarized 129Xe MRI, a new folate-conjugated cryptophane biosensor was developed that targets folate receptors (FR) overexpressed in a majority of cancer cells. The biosensor was relatively non-toxic at low micromolar concentrations required for imaging and was shown to selectively target cancer cells overexpressing FR. Flow cytometry results indicated a 10-fold higher cellular internalization in KB cells (FR+) than in HT-1080 cells (FR-). Finally, a smaller cavity tribenzylamine hemicryptophane was synthesized where the molecular structure and motions of the cage closely resembled that of molecular gyroscopes. It also provided a vehicle for exploring the structure and properties of multiple p-phenylene rotators within one molecule. The compact size and molecular motions of this gyroscope-inspired tribenzylamine hemicryptophane make it an attractive starting point for controlling the direction and coupling of rotators within molecular systems

    Impact of opioid-free analgesia on pain severity and patient satisfaction after discharge from surgery: multispecialty, prospective cohort study in 25 countries

    Get PDF
    Background: Balancing opioid stewardship and the need for adequate analgesia following discharge after surgery is challenging. This study aimed to compare the outcomes for patients discharged with opioid versus opioid-free analgesia after common surgical procedures.Methods: This international, multicentre, prospective cohort study collected data from patients undergoing common acute and elective general surgical, urological, gynaecological, and orthopaedic procedures. The primary outcomes were patient-reported time in severe pain measured on a numerical analogue scale from 0 to 100% and patient-reported satisfaction with pain relief during the first week following discharge. Data were collected by in-hospital chart review and patient telephone interview 1 week after discharge.Results: The study recruited 4273 patients from 144 centres in 25 countries; 1311 patients (30.7%) were prescribed opioid analgesia at discharge. Patients reported being in severe pain for 10 (i.q.r. 1-30)% of the first week after discharge and rated satisfaction with analgesia as 90 (i.q.r. 80-100) of 100. After adjustment for confounders, opioid analgesia on discharge was independently associated with increased pain severity (risk ratio 1.52, 95% c.i. 1.31 to 1.76; P < 0.001) and re-presentation to healthcare providers owing to side-effects of medication (OR 2.38, 95% c.i. 1.36 to 4.17; P = 0.004), but not with satisfaction with analgesia (beta coefficient 0.92, 95% c.i. -1.52 to 3.36; P = 0.468) compared with opioid-free analgesia. Although opioid prescribing varied greatly between high-income and low- and middle-income countries, patient-reported outcomes did not.Conclusion: Opioid analgesia prescription on surgical discharge is associated with a higher risk of re-presentation owing to side-effects of medication and increased patient-reported pain, but not with changes in patient-reported satisfaction. Opioid-free discharge analgesia should be adopted routinely

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Durability of Protection Post–Primary COVID-19 Vaccination in the United States

    No full text
    The durability of immune responses after COVID-19 vaccination will drive long-term vaccine effectiveness across settings and may differ by vaccine type. To determine durability of protection of COVID-19 vaccines (BNT162b2, mRNA-1273, and Ad26.COV2.S) following primary vaccination in the United States, a matched case-control study was conducted in three cohorts between 1 January and 7 September 2021 using de-identified data from a database covering 168 million lives. Odds ratios (ORs) for developing outcomes of interest (breakthrough SARS-CoV-2 infection, hospitalization, or intensive care unit admission) were determined for each vaccine (no direct comparisons). In total, 17,017,435 individuals were identified. Relative to the baseline, stable protection was observed for Ad26.COV2.S against infections (OR [95% confidence interval (CI)], 1.31 [1.18–1.47]) and hospitalizations (OR [95% CI], 1.25 [0.86–1.80]). Relative to the baseline, protection waned over time against infections for BNT162b2 (OR [95% CI], 2.20 [2.01–2.40]) and mRNA-1273 (OR [95% CI], 2.07 [1.87–2.29]) and against hospitalizations for BNT162b2 (OR [95% CI], 2.38 [1.79–3.17]). Baseline protection remained stable for intensive care unit admissions for all three vaccines. Calculated baseline VE was consistent with published literature. This study suggests that the three vaccines in three separate populations may have different durability profiles
    corecore