5 research outputs found

    Poly(benzimidazobenzophenanthroline)-Ladder-Type Two-Dimensional Conjugated Covalent Organic Framework for Fast Proton Storage

    Get PDF
    Electrochemical proton storage plays an essential role in designing next-generation high-rate energy storage devices, e.g., aqueous batteries. Two-dimensional conjugated covalent organic frameworks (2D c-COFs) are promising electrode materials, but their competitive proton and metal-ion insertion mechanisms remain elusive, and proton storage in COFs is rarely explored. Here, we report a perinone-based poly(benzimidazobenzophenanthroline) (BBL)-ladder-type 2D c-COF for fast proton storage in both a mild aqueous Zn-ion electrolyte and strong acid. We unveil that the discharged C−O− groups exhibit largely reduced basicity due to the considerable π-delocalization in perinone, thus affording the 2D c-COF a unique affinity for protons with fast kinetics. As a consequence, the 2D c-COF electrode presents an outstanding rate capability of up to 200 A g−1 (over 2500 C), surpassing the state-of-the-art conjugated polymers, COFs, and metal–organic frameworks. Our work reports the first example of pure proton storage among COFs and highlights the great potential of BBL-ladder-type 2D conjugated polymers in future energy devices

    A High-Rate Two-Dimensional Polyarylimide Covalent Organic Framework Anode for Aqueous Zn-Ion Energy Storage Devices

    Get PDF
    Rechargeable aqueous Zn-ion energy storage devices are promising candidates for next-generation energy storage technologies. However, the lack of highly reversible Zn2+-storage anode materials with low potential windows remains a primary concern. Here, we report a two-dimensional polyarylimide covalent organic framework (PI-COF) anode with high-kinetics Zn2+-storage capability. The well-organized pore channels of PI-COF allow the high accessibility of the build-in redox-active carbonyl groups and efficient ion diffusion with a low energy barrier. The constructed PI-COF anode exhibits a specific capacity (332 C g–1 or 92 mAh g–1 at 0.7 A g–1), a high rate capability (79.8% at 7 A g–1), and a long cycle life (85% over 4000 cycles). In situ Raman investigation and first-principle calculations clarify the two-step Zn2+-storage mechanism, in which imide carbonyl groups reversibly form negatively charged enolates. Dendrite-free full Zn-ion devices are fabricated by coupling PI-COF anodes with MnO2 cathodes, delivering excellent energy densities (23.9 ∌ 66.5 Wh kg–1) and supercapacitor-level power densities (133 ∌ 4782 W kg–1). This study demonstrates the feasibility of covalent organic framework as Zn2+-storage anodes and shows a promising prospect for constructing reliable aqueous energy storage devices

    Planar Active Organic Waveguide and Wavelength Filter: Self-Assembled <i>meso</i>-Tetratolylporphyrin Hexagonal Nanosheet

    No full text
    We have fabricated nearly monodispersed nanocrystalline sheet waveguides from a well–known red emitting <i>meso</i>-tetratolylporphyrin molecule (<b>1</b>) by following a bottom-up solvent assisted self-assembly technique. The nano-sheets thickness is in the range of 110–180 nm. Localized laser illumination showed excitation position dependent exciton polariton (653 and 719 nm) propagation behavior of the sheets. The spatially resolved fluorescence spectra of the sheets showed optical modes at the input and output points, indicating cavity effect. Additionally, because of the reabsorption of the 653 nm emission, the nanosheets also act as wave length filter by cutting off the 653 nm photons from reaching the output end

    Perinone-Based Ladder-Type Two-Dimensional Conjugated Covalent Organic Framework for Fast Proton Storage

    No full text
    Electrochemical proton storage plays an essential role in designing next-generation high-rate energy storage technologies, e.g., aqueous batteries. Two-dimensional conjugated covalent organic frameworks (2D c-COFs) are promising electrode materials, but their competitive proton and metal-ion insertion mechanisms remain elusive, and COF-based proton storage is rarely explored. Here, we report a perinone-based ladder-type 2D c-COF towards fast proton storage in both mild aqueous Zn-ion electrolyte and strong acid. We unveil that the generated C-O- groups via discharge exhibit largely reduced basicity due to the considerable pi-delocalization in perinone, thus affording the 2D c-COF a unique affinity to proton with fast kinetics. As a consequence, the 2D c-COF electrode presents outstanding rate capability up to 200 A g-1 (over 2500C). Our work reports the first example of proton storage among COFs and highlights the great potential of perinone-based 2D c-COF in future energy devices
    corecore