3,237 research outputs found

    Assessment of the Quality of Safety Cases: A Research Preview

    Get PDF
    Proceedings of the 25th International Working Conference, REFSQ 2019, Essen, Germany, March 18–21, 2019.[Context and motivation] Safety-critical systems in application domains such as aerospace, automotive, healthcare, and railway are subject to assurance processes to provide confidence that the systems do not pose undue risks to people, property, or the environment. The development of safety cases is usually part of these processes to justify that a system satisfies its safety requirements and thus is dependable. [Question/problem] Although safety cases have been used in industry for over two decades, their management still requires improvement. Important weaknesses have been identified and means to assess the quality of safety cases are limited. [Principal ideas/results] This paper presents a research preview on the assessment of the quality of safety cases. We explain how the area should develop and present our preliminary work towards enabling the assessment with Verification Studio, an industrial tool for system artefact quality analysis. [Contribution] The insights provided allow researchers and practitioners to gain an understanding of why safety case quality requires further investigation, what aspects must be considered, and how quality assessment could be performed in practice.The research leading to this paper has received funding from the AMASS project (H2020-ECSEL ID 692474; Spain’s MINECO ref. PCIN-2015-262). We also thank REFSQ reviewers for their valuable comments to improve the paper

    Solution to the Ward Identities for Superamplitudes

    Get PDF
    Supersymmetry and R-symmetry Ward identities relate on-shell amplitudes in a supersymmetric field theory. We solve these Ward identities for (Next-to)^K MHV amplitudes of the maximally supersymmetric N=4 and N=8 theories. The resulting superamplitude is written in a new, manifestly supersymmetric and R-invariant form: it is expressed as a sum of very simple SUSY and SU(N)_R-invariant Grassmann polynomials, each multiplied by a "basis amplitude". For (Next-to)^K MHV n-point superamplitudes the number of basis amplitudes is equal to the dimension of the irreducible representation of SU(n-4) corresponding to the rectangular Young diagram with N columns and K rows. The linearly independent amplitudes in this algebraic basis may still be functionally related by permutation of momenta. We show how cyclic and reflection symmetries can be used to obtain a smaller functional basis of color-ordered single-trace amplitudes in N=4 gauge theory. We also analyze the more significant reduction that occurs in N=8 supergravity because gravity amplitudes are not ordered. All results are valid at both tree and loop level.Comment: 29 pages, published versio

    Dual conformal constraints and infrared equations from global residue theorems in N=4 SYM theory

    Get PDF
    Infrared equations and dual conformal constraints arise as consistency conditions on loop amplitudes in N=4 super Yang-Mills theory. These conditions are linear relations between leading singularities, which can be computed in the Grassmannian formulation of N=4 super Yang-Mills theory proposed recently. Examples for infrared equations have been shown to be implied by global residue theorems in the Grassmannian picture. Both dual conformal constraints and infrared equations are mapped explicitly to global residue theorems for one-loop next-to-maximally-helicity-violating amplitudes. In addition, the identity relating the BCFW and its parity-conjugated form of tree-level amplitudes, is shown to emerge from a particular combination of global residue theorems.Comment: 21 page

    Manifest SO(N) invariance and S-matrices of three-dimensional N=2,4,8 SYM

    Get PDF
    An on-shell formalism for the computation of S-matrices of SYM theories in three spacetime dimensions is presented. The framework is a generalization of the spinor-helicity formalism in four dimensions. The formalism is applied to establish the manifest SO(N) covariance of the on-shell superalgebra relevant to N =2,4 and 8 SYM theories in d=3. The results are then used to argue for the SO(N) invariance of the S-matrices of these theories: a claim which is proved explicitly for the four-particle scattering amplitudes. Recursion relations relating tree amplitudes of three-dimensional SYM theories are shown to follow from their four-dimensional counterparts. The results for the four-particle amplitudes are verified by tree-level perturbative computations and a unitarity based construction of the integrand corresponding to the leading perturbative correction is also presented for the N=8 theory. For N=8 SYM, the manifest SO(8) symmetry is used to develop a map between the color-ordered amplitudes of the SYM and superconformal Chern-Simons theories, providing a direct connection between on-shell observables of D2 and M2-brane theories.Comment: 28 page

    Unraveling L_{n,k}: Grassmannian Kinematics

    Get PDF
    It was recently proposed that the leading singularities of the S-Matrix of N = 4 super Yang-Mills theory arise as the residues of a contour integral over a Grassmannian manifold, with space-time locality encoded through residue theorems generalizing Cauchy's theorem to more than one variable. We provide a method to identify the residue corresponding to any leading singularity, and we carry this out very explicitly for all leading singularities at tree level and one-loop. We also give several examples at higher loops, including all generic two-loop leading singularities and an interesting four-loop object. As a special case we consider a 12-pt N^4MHV leading singularity at two loops that has a new kinematic structure involving double square roots. Our analysis results in a simple picture for how the topological structure of loop graphs is reflected in various substructures within the Grassmannian.Comment: 26+11 page

    The S-Matrix in Twistor Space

    Get PDF
    The simplicity and hidden symmetries of (Super) Yang-Mills and (Super)Gravity scattering amplitudes suggest the existence of a "weak-weak" dual formulation in which these structures are made manifest at the expense of manifest locality. We suggest that this dual description lives in (2,2) signature and is naturally formulated in twistor space. We recast the BCFW recursion relations in an on-shell form that begs to be transformed into twistor space. Our twistor transformation is inspired by Witten's, but differs in treating twistor and dual twistor variables more equally. In these variables the three and four-point amplitudes are amazingly simple; the BCFW relations are represented by diagrammatic rules that precisely define the "twistor diagrams" of Andrew Hodges. The "Hodges diagrams" for Yang-Mills theory are disks and not trees; they reveal striking connections between amplitudes and suggest a new form for them in momentum space. We also obtain a twistorial formulation of gravity. All tree amplitudes can be combined into an "S-Matrix" functional which is the natural holographic observable in asymptotically flat space; the BCFW formula turns into a quadratic equation for this "S-Matrix", providing a holographic description of N=4 SYM and N=8 Supergravity at tree level. We explore loop amplitudes in (2,2) signature and twistor space, beginning with a discussion of IR behavior. We find that the natural pole prescription renders the amplitudes well-defined and free of IR divergences. Loop amplitudes vanish for generic momenta, and in twistor space are even simpler than their tree-level counterparts! This further supports the idea that there exists a sharply defined object corresponding to the S-Matrix in (2,2) signature, computed by a dual theory naturally living in twistor space.Comment: V1: 46 pages + 23 figures. Less telegraphic abstract in the body of the paper. V2: 49 pages + 24 figures. Largely expanded set of references included. Some diagrammatic clarifications added, minor typo fixe

    A manifestly MHV Lagrangian for N=4 Yang-Mills

    Full text link
    We derive a manifestly MHV Lagrangian for the N=4 supersymmetric Yang-Mills theory in light-cone superspace. This is achieved by constructing a canonical redefinition which maps the N=4 superfield and its conjugate to a new pair of superfields. In terms of these new superfields the N=4 Lagrangian takes a (non-polynomial) manifestly MHV form, containing vertices involving two superfields of negative helicity and an arbitrary number of superfields of positive helicity. We also discuss constraints satisfied by the new superfields, which ensure that they describe the correct degrees of freedom in the N=4 supermultiplet. We test our derivation by showing that an expansion of our superspace Lagrangian in component fields reproduces the correct gluon MHV vertices.Comment: 37 pages, 1 figure. v2: minor changes, references adde

    A note on the boundary contribution with bad deformation in gauge theory

    Full text link
    Motivated by recently progresses in the study of BCFW recursion relation with nonzero boundary contributions for theories with scalars and fermions\cite{Bofeng}, in this short note we continue the study of boundary contributions of gauge theory with the bad deformation. Unlike cases with scalars or fermions, it is hard to use Feynman diagrams directly to obtain boundary contributions, thus we propose another method based on the N=4{\cal N}=4 SYM theory. Using this method, we are able to write down a useful on-shell recursion relation to calculate boundary contributions from related theories. Our result shows the cut-constructibility of gauge theory even with the bad deformation in some generalized sense.Comment: 16 pages, 7 figure

    Form Factors in N=4 Super Yang-Mills and Periodic Wilson Loops

    Full text link
    We calculate form factors of half-BPS operators in N=4 super Yang-Mills theory at tree level and one loop using novel applications of recursion relations and unitarity. In particular, we determine the expression of the one-loop form factors with two scalars and an arbitrary number of positive-helicity gluons. These quantities resemble closely the MHV scattering amplitudes, including holomorphicity of the tree-level form factor, and the expansion in terms of two-mass easy box functions of the one-loop result. Next, we compare our result for these form factors to the calculation of a particular periodic Wilson loop at one loop, finding agreement. This suggests a novel duality relating form factors to periodic Wilson loops.Comment: 26 pages, 10 figures. v2: typos fixed, comments adde

    Dual conformal symmetry of 1-loop NMHV amplitudes in N=4 SYM theory

    Full text link
    We prove that 1-loop n-point NMHV superamplitudes in N=4 SYM theory are dual conformal covariant for all numbers n of external particles (after regularization and subtraction of IR divergences). This property was previously established for n < 10 in arXiv:0808.0491. We derive an explicit representation of these superamplitudes in terms of dual conformal cross-ratios. We also show that all the 1-loop `box coefficients' obtained from maximal cuts of N^kMHV n-point functions are covariant under dual conformal transformations.Comment: 20 pages, 2 figure
    • …
    corecore