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Abstract

An on-shell formalism for the computation of S-matrices of SYM theories in
three spacetime dimensions is presented. The framework is a generalization of
the spinor-helicity formalism in four dimensions. The formalism is applied to
establish the manifest SO(N ) covariance of the on-shell superalgebra relevant to
N = 2, 4 and 8 SYM theories in d = 3. The results are then used to argue for the
SO(N ) invariance of the S-matrices of these theories: a claim which is proved
explicitly for the four-particle scattering amplitudes. Recursion relations relat-
ing tree amplitudes of three-dimensional SYM theories are shown to follow from
their four-dimensional counterparts. The results for the four-particle amplitudes
are verified by tree-level perturbative computations and a unitarity based con-
struction of the integrand corresponding to the leading perturbative correction
is also presented for the N = 8 theory. For N = 8 SYM, the manifest SO(8)
symmetry is used to develop a map between the color-ordered amplitudes of the
SYM and superconformal Chern-Simons theories, providing a direct connection
between on-shell observables of D2 and M2-brane theories.

http://arxiv.org/abs/1103.0786v1
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1 Introduction and summary

Recent developments have uncovered a wealth of algebraic structures and dualities
pertaining to the scattering matrices of supersymmetric Yang-Mills (SYM) theories in
3 + 1 dimensions. In the case of N = 4 SYM in d = 4, the possibility that the partic-
ularly elegant Parke-Taylor form of the maximal helicity violating (MHV) amplitudes
[1] is suggestive of deeper symmetries in the theory had been appreciated for a long
time [2, 3]. It is only in recent times that it has become clear that the holomorphic
form of the MHV amplitudes is a particular manifestation of Yangian, dual-conformal
and dual-superconformal symmetries of the S-matrix of the gauge theory [4, 5, 6, 7, 8]
- symmetries which are not manifest at the level of the Lagrangian of the theory (for
recent reviews on the subject see [9, 10, 11, 12, 13]). These symmetries also manifest
themselves in the form of recursion relations that relate amplitudes with a given num-
ber of external legs to products of amplitudes with lower number of external legs at a
fixed order in perturbation theory [14]. Given that the usual Feynman diagrammatic
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techniques involve thousands of Feynman diagrams even for ∼ 10 legs at tree-level, the
algebraic relations are a great boon even from a strictly pragmatic computational point
of view. Furthermore, as far as loop corrections are concerned, the method of gener-
alized unitarity allows one to compute higher order corrections to a given amplitude
using only the minimal on-shell information, providing a much sought-after alternative
to the exponential computational complexity encountered by the standard Feynman
diagrammatic approach to loop corrections [15, 16, 17]. All these structures, insights
and symmetries have contributed to revealing the underlying analytic and algebraic
structures of the S-matrix of the four-dimensional superconformal theory, along with
compelling proposals for its form to all orders in perturbation theory [8, 18].

Given this enormous progress in our understanding of the S-matrix of N = 4 SYM
it is natural to ask if S-matrices of non-conformal gauge theories continue to exhibit
“hidden” structures not captured by their Lagrangians as well. Of particular interest in
this regard are SYM theories in d = 2+1. In three dimensions, theories with N = 2, 4,
and 8 supersymmetry inherit all the Poincaré supersymmetries of the four-dimensional
theories of which they are dimensional reductions. However, the appearance of a
dimensionful coupling constant prevents them from being conformally invariant, even
classically. These theories thus provide a controlled departure from the regime of
classically conformally invariant four-dimensional Yang-Mills theories whose scattering
matrices have been explored in the greatest detail following the developments alluded
to above1. Of special interest is the D2-brane worldvolume theory described by the
dimensional reduction of N = 4 SYM to the three-dimensional sixteen-supercharge
non-conformal N = 8 SYM theory. The duality between D2 and M2-brane theories
imply that the g2YM → ∞ limit of this theory is described by a superconformal Chern-
Simons theory [21, 22, 23, 24, 25] whose scattering matrix has been shown to exhibit
Yangian symmetries and other twistorial properties that are very reminiscent of the
S-matrix of N = 4 SYM [26, 27, 28, 29]. Thus, it might be expected that the S-
matrix of the three-dimensional gauge theory might contain special structures that its
Lagrangian obscures.

On the face of it, a direct connection between the S-matrices of the two N =
8 three-dimensional gauge theories presents a challenge. In the case of the gauge
group being SU(2), the M2-brane theory has a manifest SO(8) R-symmetry, which is
reflected in its S-matrix. More generally, it may be expected - and it was indeed verified
to all loop orders in the case of four-particle amplitudes in [26] - that the scattering
matrices of N ≥ 4 SCS theories reflect the global R-Symmetries of their Lagrangians.
SYM theories with N = 2, 4 or 8 supersymmetries, only posses SO(N − 1) global
R-symmetry in their Lagrangians. Thus, for there to be any meaningful comparison
of the D2 and M2-brane scattering matrices it is imperative that we understand how
the extra U(1) symmetry emerges in the Yang-Mills theories. The situation clearly
requires the development of on-shell techniques for SYM theories that parallel the
recent studies with M2 brane theories.

If one is to look at techniques used to study on-shell properties of four-dimensional
gauge theories as models for developing d = 2 + 1 on-shell methods, several osten-
sible arguments can be made to suggest that four-dimensional SYM techniques do
not readily adapt to a three-dimensional context. The fundamental building block of

1For recent progress in various aspects of highly supersymmetric three-dimensional Yang-Mills
theories see [19, 20]
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d = 4 on-shell techniques is the spinor-helicity basis for the vector and spinor degrees
of freedom, which is at the heart of many twistorial aspects of the S-matrices of d = 4
SYM theories. Thus, the absence of a helicity degree of freedom in three dimensions
appears to present an immediate stumbling block. Furthermore, the absence of con-
formal symmetries in the SYM theories of interest to this work appears to rule out
dual-conformal and dual-superconformal symmetries – symmetries that were a suffi-
cient condition for the existence of infinite dimensional Yangian symmetries for the
S-matrix of N = 4 SYM in d = 4 [6] – in d=3.

Given the motivations and technical caveats discussed above, we develop a mani-
festly three-dimensional on-shell formalism for SYM theories in this paper. Motivated
by the four-dimensional spinor-helicity framework, we use solutions of the massless
Dirac equation to construct gluon polarization vectors. One of the advantages of our
formalism is that it allows us to explicitly track the fate of the helicity degree of
freedom when four-dimensional gauge theories are reduced to d = 2 + 1. We find
that helicity is augmented to a continuous U(1) symmetry of the S-matrices of three-
dimensional SYM theories. Furthermore, this U(1) degree of freedom couples to the
SO(N − 1) R-symmetry of N = 2, 4 and 8 d = 2 + 1 SYM theories to make the
on-shell representation of the supersymmetry algebra manifestly SO(N ) covariant.
Put differently, our formalism makes it transparent that the scalar corresponding to
the on-shell gluon in three dimensions couples to the remaining N − 1 scalars of the
gauge theories in a way that makes the on-shell supersymmetry algebra the same as
the (off-shell) algebra for a free theory of N massless real scalars and fermions. This
symmetry enhancement has not been known to be manifest in the Lagrangian except
in the abelian limit where the gauge field can be dualized into a scalar [30]. What we
exhibit in the paper is the same phenomenon; but in the context of the S-matrices of
the corresponding non-abelian gauge theories.

Using our formalism we are able to show that the four-particle amplitudes of N =
2, 4, 8 d = 2 + 1 SYM theories have a manifest SO(N ) invariance to all orders in
perturbation theory. We also argue, though we do not provide a formal proof in
this paper, that the manifest SO(N ) invariance should extend to the higher-particle
amplitudes as well. The four-particle amplitudes have the form2

SYM(t, s, g2YM)Sijkl({W}; t, s). (1.1)

where the “universal” term Sijkl({W}; t, s) only depends on the species of particles
being scattered {W} and contains all the SO(N ) dependence (in the indices i, j, k
and l). We show that Sijkl({W}; t, s) is an SO(N ) invariant tensor for all the theories
under consideration in this paper. Furthermore, for the special case of the N = 8
theory with gauge group SU(2), we show that Sijkl({W}; t, s) is the same as the
corresponding quantity for the BLG theory computed in [26]. This analysis allows us
to see a direct connection between an SO(8) invariant physical observable in the D2
and M2-brane theories and reduce the problem of establishing the duality (at least in
the context of four-particle amplitudes) to the asymptotic behavior of a single function
SYM(t, s, g2YM) as g2YM → ∞.

With the general aim of studying S-matrix elements of various three-dimensional
theories in perturbation theory we also provide a one-to-one map between S-matrices of

2s and t are the standard Mandelstam variables, while gYM is the coupling constant of the Yang-
Mills theory under consideration.
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three-dimensional gauge theories and the corresponding matrices of the four-dimensional
theories that they are dimensional reductions of. In particular we give a useful pre-
sentation of three and four-dimensional gamma matrices and spinor-helicity bases in
which all tree-level amplitudes in three-dimensional SYM theories are obtained simply
by setting the fourth component of the momentum to zero in the known results for
four-dimensional amplitudes. We use the relations between three and four-dimensional
amplitudes to derive the analogs of the BCFW relations for three-dimensional SYM
theories. We also verify these results by explicit perturbative calculations for the
d = 2+ 1 theories of interest. In this context, we are also able to interpret the known
kinematical results in four dimensions such as the vanishing of all helicity “plus” am-
plitudes as BPS conditions in three dimensions. Finally, using the N = 8 theory as an
illustrative example, we are able to show that the integrands corresponding to loop cor-
rections for amplitudes in the three-dimensional theories (obtained using generalized
unitarity) are also obtained from known integrands for the associated four-dimensional
theories.

The paper is organized as follows. In section 2 we discuss the on-shell SUSY
algebra, concentrating on the N = 2 theory. We show that the algebra, and therefore
the S-matrix, manifests SO(2) symmetry. The argument readily generalizes to SO(N )
symmetry for theories with N > 2. We also give an explicit map of the d = 4
spinor-helicity formalism under dimensional reduction to d = 3 and obtain recursion
relations for all tree-level amplitudes. We derive specific relations between four-particle
scattering amplitudes following from the SUSY algebra. In section 3 we calculate all
four-particle scattering amplitudes in the N = 2, 4, 8 theories at tree-level directly
using Feynman diagrams. The manifest SO(N ) forms of the amplitudes are presented,
which allows a verification of the relations derived from the SUSY algebra in section
2. In section 4 we discuss the four-particle amplitudes in the N = 8 theory at one-
loop, recovering the scalar box integral found in N = 4 SYM in d = 4. In section
5 we discuss the relationship between the S-matrix of superconformal Chern-Simons
theories and the SYM theories considered in the paper. We conclude the paper with
a discussion in section 6.

2 On-shell N = 2 algebra in three dimensions

In this section we obtain the SO(N ) symmetric realization of the on-shell supersym-
metry algebra and introduce the spinor-“helicity” techniques tailored for the analyses
of S-matrices of d = 3 gauge theories. We then use our particular realization of the
algebra to constrain four-particle amplitudes to a single function of the Mandelstam
variables and g2YM , thereby fixing the “matrix” or R-symmetry structure of the four
particle S-matrix. The relationships so obtained between the various matrix elements
are later verified explicitly at weak coupling. We also present an explicit map between
the three-dimensional formalism developed in this paper and the well known spinor-
helicity framework in four dimensions. As a byproduct of this map, we are able to
relate all tree-level three-dimensional amplitudes for N = 2, 4 and 8 theories to known
results for N = 1, 2 and 4 theories in one higher dimension very transparently. In the
interests of brevity, most of the discussion concerning our formalism will be limited to
the d = 3, N = 2 case. The generalizations of the results presented in this section to
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higher supersymmetry are straightforward and we shall present the results relevant to
higher extended supersymmetry later in the paper.

The on-shell algebra acting on asymptotic scattering states is nothing but the
supersymmetry algebra of the free theory. The free N = 2 SYM theory can be
expressed in a manifestly SO(2) symmetric form by dualizing the gauge field to a
scalar ∂µΦ1 ∼ ǫµνρF

νρ. Note that since the free theory is the same as the abelian
limit, we can ignore color indices for this discussion. The dualized action

Sd =

∫
d3x

(
−1

2
∂µΦI∂

µΦI +
i

2
χ̄Iγµ∂

µχI

)
, (2.1)

is invariant under the N = 2 SUSY transformations

δχI = −1

2
(∂µΦ1γ

µǫI + ǫIJ∂µΦ2γ
µǫJ ) ,

δΦ1 =
i

2
χ̄IǫI ,

δΦ2 =
i

2
χ̄IǫJǫIJ ,

(2.2)

where ǫ12 = −ǫ21 = +1. Also, in the above equations, δW = [ǭIQI ,W] and we can
read-off the algebra

[β̄MQM , ǭNQN ] =
1

2
(ǭLγ

µβL)pµ, (2.3)

or equivalently

{Qα
a , Q

β
b } =

1

2
P αβδab, where P αβ = −(pµγ

µC−1)βα. (2.4)

In three dimensions, we can always pick a real Majorana representation for the γ
matrices γµ = (iσ2, σ1, σ3) with C = γ0, so that

P αβ = P βα =

(
−p0 − p1 p2

p2 −p0 + p1

)
. (2.5)

The solution of the Dirac equation γµpµu(p) = 0 is given by

u(p) =
1√

p0 − p1

(
p2

p1 − p0

)
, uα(p)uβ(p) = −P αβ. (2.6)

The on-shell (momentum space) version of the N = 2 algebra can be expressed as
follows (we use a and λ to denote the momentum-space creation operators for the Φ
and χ fields respectively)

Qα
I |a1〉 =

1

2
uα|λI〉,

Qα
I |a2〉 =

1

2
ǫIJu

α|λJ〉,

Qα
J |λI〉 = −1

2
uα (δJI |a1〉+ ǫJI |a2〉) .

(2.7)

This is the manifestly SO(2) covariant form of the algebra which should be realized
on the asymptotic states of the gauge theory.
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2.1 Explicit realization

To concretely establish that (2.7) is indeed the on-shell representation of the SUSY
algebra for N = 2 SYM in d = 2 + 1, in this section we will obtain the result via
dimensional reduction, starting with N = 1 SYM in d = 4, whose action is given in
(A.5). We start with a four-dimensional real representation of the Γ matrices

ΓM =

{(
iσ2 0
0 −iσ2

)
,

(
σ1 0
0 −σ1

)
,

(
σ3 0
0 −σ3

)
,

(
0 11 0

)}
,

Γ 5 = iΓ 0 · · ·Γ 3.

(2.8)

The four-dimensional Majorana fermion Ψ =

(
λ1
λ2

)
. The three-dimensional γ matrices

are
γµ =

(
iσ2, σ1, σ3

)
. (2.9)

The dimensional reduction is carried out by compactifying the “3” direction. It is
readily seen that the fermion kinetic energy term

∫
Ψ̄ΓM∂MΨ =

∫
λ̄Iγ

µ∂µλI upon
dimensional reduction, leading us to identify λI as the three-dimensional fermions. It
is understood that the charge conjugation matrix is identified with Γ 0 and γ0 in four
and three dimensions respectively and the Majorana conditions Ψ † = ΨT and λ†I = λTI
are imposed. The four-dimensional SUSY transformation law δAM = 1

2
ǭΓMΨ (we will

not display the color indices in this subsection to avoid notational clutter) translates
into the three-dimensional relation

δAµ =
1

2
η̄IγµλI ,

δΦ =
1

2
ǫIJ η̄IλJ ,

(2.10)

where A3 = Φ. We now want to translate these relations into relations between
momentum space physical degrees of freedom and recover (2.7). For this purpose, it
is very convenient to introduce a polarization vector

ǫµ(p, k) =
〈p|γµ|k〉
〈kp〉 , pµǫ

µ(p, k) = kµǫ
µ(p, k) = 0. (2.11)

It is implied that

|p〉 = u(p), 〈p| = ū(p), 〈kp〉 = ū(k)u(p) = −〈pk〉, (2.12)

where u(p) is the wavefunction defined before. The polarization vectors satisfy

ǫµ(p, k)ǫ
µ(p, k′) = +1, ǫµ(p, k)(γ

µ)αβ =
2ūβ(p)uα(k)− δαβ〈pk〉

〈kp〉 . (2.13)

To get the second equation above, we have used the Fierz identity: (γµ)αβ(γ
µ)γδ =

2δαδδβγ − δαβδγδ.
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The dynamical fields are mode-expanded as follows,

Φ =

∫
d2p

(2π)2
1√
2p0

(
a
†
2(p)e

ip.x + a2(p)e
−ip.x

)
,

Aµ =

∫
d2p

(2π)2
1√
2p0

ǫµ(p, k)
(
a
†
1(p)e

ip.x + a1(p)e
−ip.x

)
,

λI =

∫
d2p

(2π)2
1√
2p0

(
u(p)λ†I(p)e

ip.x + u(p)λI(p)e
−ip.x

)
.

(2.14)

Application of (2.10) to the oscillator expansion given above implies that the on-shell
states a†I |0〉 = |aI〉 transform as

Qα
I |a1〉 =

1

2
uα|λI〉,

Qα
I |a2〉 =

1

2
ǫIJu

α|λJ〉,
(2.15)

which are the first two equations of (2.7). The action for the supercharge on the
fermion field

Qα
J |λI〉 = −1

2
uα (δIJ |a1〉+ ǫJI |a2〉) , (2.16)

follows simply from the condition of the closure of the algebra (2.4). We have thus
recovered the manifestly SO(2) symmetric form of the on-shell N = 2 algebra directly
from the canonical quantization of the gauge theory. The S-matrix

〈WI1WI2 · · ·WIn〉 = SI1I2···In , (2.17)

where WJ stand for any of the four bosonic or fermionic fields must be SO(2) invariant,
since the component fields have a manifest SO(2) covariance and the S-matrix com-
mutes with the supercharges given above. We generalize these arguments in section
2.5 to higher extended supersymmetry algebras.

2.2 Recovering helicity

Equivalently, one can recast the algebra in terms of a U(1) symmetric form, which is
very instructive for the purposes of drawing parallels with known results for N = 1
SYM in d = 4. Defining the complex combinations W± = 1√

2
(W1 ± iW2), we can

express the algebra on single particle states as

Qα
+|a+〉 =

1√
2
uα|λ+〉, Qα

+|λ−〉 = − 1√
2
uα|a−〉,

Qα
−|a−〉 =

1√
2
uα|λ−〉, Qα

−|λ+〉 = − 1√
2
uα|a+〉,

Qα
−|a+〉 = Qα

+|a−〉 = Qα
+|λ+〉 = Qα

−|λ−〉 = 0.

(2.18)

The a± (λ±) states are direct analogues of the d = 4 gluon (gluino) helicities. In the
next subsection we consider the fate of the helicity degree of freedom under dimensional
reduction from d = 4 in detail.

7



2.3 Dimensional reduction of the spinor-helicity basis from
d = 4 to d = 3

The on-shell supersymmetry transformations given above were derived in a purely
three-dimensional set up. We now study how the above discussion is related to the
spinor-helicity framework in four dimensions. With the four-dimensional gamma ma-
trices as in (2.8), eigenstates of the helicity operator Γ± = 1

2
(1 ± Γ 5) are given by

spinors of the form

U+ =
1√
2

(
V

−iV

)
, where pµγ

µV = +ip3V,

U− =
1√
2

(
U

iU

)
, where pµγ

µU = −ip3U.
(2.19)

The four-dimensional massless Dirac equation, written on the right of the above equa-
tions is readily interpreted as two copies of the massive Dirac equation satisfied by U
and V , with masses ∼ ±p3. The solutions for U and V are

V =
1√

p0 − p1

(
p2 + ip3
p1 − p0

)
, U =

1√
p0 − p1

(
p2 − ip3
p1 − p0

)
. (2.20)

We also have the closure3 conditions V α(p)Uβ(p) = −P αβ−ip3ǫαβ . The two wavefunc-
tions are related by complex conjugation as U∗(p) = −iV (−p). Most importantly for
our considerations U(p)p3=0 = V (p)p3=0 = u(p), where the momentum of the last wave-
function is three-dimensional. The four-dimensional spinor products can be expressed
as

〈pq〉 = +Ū(p)V (q), [pq] = +V̄ (p)U(q), |〈pq〉|2 = −2p · q. (2.21)

The four-dimensional polarization vectors are chosen in-line with standard conventions

ǫ±M(p, k) = ±〈p± |ΓM |k±〉√
2〈k ∓ |p±〉

, (2.22)

where k is a reference four-momentum, and decompose, upon dimensional reduction
to

ǫ±µ(p, k) = +
1√
2
ǫµ(p, k), ǫ+3(p, k) = − i√

2
, ǫ−3(p, k) = +

i√
2
. (2.23)

The explicit split of the four-dimensional photon into a three-dimensional photon and
a scalar upon the compactfication of the “3” direction is as follows

AM =

∫
d2p

(2π)2
1√
2p0

ǫ±M (p, k)A±†(p)eip.x + h.c.

=

∫
d2p

(2π)2
1

2
√
p0

[
ǫ±µ(p, k)

(
A+†(p) + A−†(p)

)
− i
(
A+†(p)−A−†(p)

)]
eip.x + h.c..

(2.24)

3The solutions U, V can also be regarded as wavefunctions for massive fermions in three dimensions,
with p3 ∼ m. Indeed, in [26] these solutions were used extensively in the computations of four-particle
amplitudes of massive SCS theories.
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We can thus readily identify

a
†
1 =

1√
2
(A+ + A−)†, a

†
2 = − i√

2
(A+ − A−)†, a±† = (A±)†. (2.25)

Consequently we can relate all tree-level n-particle scalar/gluon amplitudes as

〈++−−−+ · · · 〉|d=3 = 〈++−−−+ · · · 〉|d=4,x3=0. (2.26)

Similar formulae exist for amplitudes involving fermions, namely

|λ+〉 = |Ψ+〉x3=0, |λ−〉 = |Ψ−〉x3=0. (2.27)

Finally, if the field theory contains scalar degrees of freedom Φ, then one trivially has

|Φ〉d=4,x3=0 = |Φ〉d=3, (2.28)

as the identifying relation between the three-dimensional on-shell state and the dimen-
sional reduction of its four-dimensional counterpart.

These identifications allow us to read-off all the N = 2, 4 and 8 d = 3 tree-level
amplitudes from the known results for N = 1, 2 and 4 SYM in d = 4. The spinor
bases in three and four dimensions chosen here enable the map between the three and
four-dimensional amplitudes to be as simple as possible. Given an amplitude in the
four-dimensional theory, one simply sets the fourth component of the momentum to
zero to read-off the three-dimensional results.

Recursion relations: The map between the three and four-dimensional amplitudes
also allows us to readily derive tree-level recursion relations for three-dimensional am-
plitudes. Using the notation of [14] and given a four-dimensional amplitude A, we
define the amplitude with the momenta shifted by a complex parameter z, A(z). Tak-
ing the limit where the fourth components of all the momenta are set to zero, after
subjecting the shifted amplitude to the BCFW relations yields recursion relations for
the three-dimensional amplitudes. In other words,

lim
k3
i
→0

(
1

2πi

∮
dz

A(z)

z
= A(0)−

∑

ij

∑

h

Ah
L(zij)A−h

R (zij)

P 2
ij

)
, (2.29)

is the relevant recursion relation for SYM amplitudes in d = 3. Thus to find the
recursion relations for a given three-dimensional amplitude, we can “oxidize” it to
its four-dimensional counterpart using the dictionary given above, apply the BCFW
relations and then dimensionally reduce back to three dimensions to obtain the desired
recursion relations.

2.4 Relations between amplitudes

We can use the complex form of the algebra to relate various amplitudes. We start out
by noticing that all amplitudes of the form 〈a+ · · · a+〉, 〈λ+ · · ·λ+〉 and their complex
conjugates are annihilated by half of the supercharges, making them 1

2
BPS states.

Furthermore, they are identically zero to all orders in perturbation theory. For example

〈[Q−, λ+a+ · · · a+]〉 = 0 ⇒ 〈a+ · · · a+〉 = 0. (2.30)
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These are then the analogues of all helicity “plus” amplitudes in the four-dimensional
case. Similarly, acting with Q− allows us to see that all boson amplitudes with only one
a− – the analogues of the minimally helicity violating amplitudes in four dimensions
– are also zero. Turning our attention to four-particle amplitudes, it is easy to see
that the only non-vanishing amplitudes are those that involve two plus and two minus
fields. Furthermore, the only non-vanishing mixed amplitudes are those that involve
bosons and fermions of both signs, i.e. of the type 〈a+a−λ+λ−〉. These amplitudes are
related to the four boson amplitudes as follows

〈λ+λ−a+a−〉 = +
〈32〉
〈31〉〈a+a−a+a−〉, 〈λ+λ−a−a+〉 = +

〈42〉
〈41〉〈a+a−a−a+〉,

〈a+λ−λ+a−〉 = −〈12〉
〈13〉〈a+a−a+a−〉, 〈a+λ−a−λ+〉 = −〈12〉

〈14〉〈a+a−a−a+〉,

〈λ+a+λ−a−〉 = +
〈23〉
〈21〉〈a+a+a−a−〉, 〈a+λ+λ−a−〉 = +

〈13〉
〈12〉〈a+a+a−a−〉,

〈λ+a−λ−a+〉 = +
〈43〉
〈41〉〈a+a−a−a+〉, 〈a+a−λ−λ+〉 = −〈13〉

〈14〉〈a+a−a−a+〉,

〈a+a−λ+λ−〉 = +
〈14〉
〈13〉〈a+a−a+a−〉, 〈λ+a−a+λ−〉 = +

〈34〉
〈31〉〈a+a−a+a−〉,

〈a+λ+a−λ−〉 = +
〈14〉
〈12〉〈a+a+a−a−〉, 〈λ+a+a−λ−〉 = −〈31〉

〈34〉〈a+a+a−a−〉.

(2.31)

The rest of the two-boson two-fermion amplitudes are related to the ones given above
by complex conjugation. Proceeding to the four-fermion amplitudes, we find the fol-
lowing relations

〈λ+λ+λ−λ−〉 = +
〈12〉
〈24〉〈a+λ+λ−a−〉 = +

〈13〉
〈24〉〈a+a+a−a−〉,

〈λ+λ−λ+λ−〉 = +
〈42〉
〈41〉〈a+a−λ+λ−〉 = +

〈24〉
〈13〉〈a+a−a+a−〉,

〈λ+λ−λ−λ+〉 = +
〈14〉
〈42〉〈a+a−λ−λ+〉 = +

〈13〉
〈24〉〈a+a−a−a+〉.

(2.32)

These relationships imply that there is only one independent four-particle amplitude
for the N = 2 theory in three dimensions. The number of independent amplitudes
stays the same for theories with higher extended supersymmetries as well. All the
above mentioned relationships have been verified explicitly at tree-level, see section 3.

2.5 Higher extended on-shell supersymmetry algebras

Here we outline how the methods presented above can be used to derive the on-shell
supersymmetry algebra for theories with higher extended supersymmetry, using the
N = 4 supersymmetric case as an illustrative example. The N = 8 case follows
similarly; we have relegated the analogous details to the appendices. We start with
N = 1 SYM in d = 6 with the action

S =

∫
d6x

(
−1

4
F a
MNF

aMN +
i

2
Ψ̄ aΓ ′

MD
MΨ a

)
, (2.33)
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invariant under

δAa
M =

i

2
(Ψ̄ aΓ ′

Mǫ− ǭΓ ′
MΨ

a),

δΨ a = −1

4
[Γ ′

M , Γ
′
N ]F

aMNǫ.

(2.34)

The six-dimensional gamma matrices are related to the four-dimensional ones (2.8) as

Γ ′ = σ1 ⊗ Γ, σ1 ⊗ Γ 5, σ2 ⊗ 1. (2.35)

In six dimensions, one can only have a Weyl condition, (1 + Γ ′0 · · ·Γ ′5)Ψ = 0, which
is satisfied by

Ψ =

(
0
Λ

)
, (2.36)

where Λ is a four-dimensional Dirac fermion, which can be decomposed into two real
Majorana fermions as Λ = Λ1 + iΛ2, where ΛiT = Λi†. The Majorana fermions
can be further decomposed into four, three-dimensional Majorana fermions λA with
A = 1, . . . , 4, as

Λ1 =

(
λ1
λ3

)
, Λ2 =

(
λ2
λ4

)
. (2.37)

After dimensionally reducing the theory to three dimensions and using the spinor
formalism described above, we can read-off the action of the supersymmetry generators
on the on-shell degrees of freedom from (2.34). The result is

Qα
A|aB〉 =

1

2
uα ρBAC |λC〉, Qα

A|λB〉 = −1

2
uα ρCAB|aC〉, (2.38)

where aA=1 represents the d = 3 gluon and aA 6=1 the three scalars of the theory, and
where4

ρABC =
{1⊗ 1, iσ2 ⊗ 1,−σ1 ⊗ iσ2, σ3 ⊗ iσ2

}
. (2.39)

On any of the bosonic or fermionic states |W〉 the algebra closes in an SO(4) symmetric
form as

{(QA)
α, (QB)

β}|W〉 = +
1

2
P αβδAB|W〉. (2.40)

In this form the SO(4) covariance of the N = 4 supersymmetry algebra is manifest.
As a matter of fact, it is readily seen that this algebra is a symmetry of the SO(4)
invariant free N = 4 action S =

∫
−1

2
∂µΦA∂

µΦA+ i
2
λ̄Aγµ∂

µλA. Thus the four-particle
scattering matrix 〈WAWBWCWD〉 must have the form

〈WAWBWCWD〉 = A δABδCD + B δACδBD + C δADδBC +D ǫABCD, (2.41)

for it to commute with the supercharges given above. More generally, n-particle am-
plitudes of this gauge theory must only involve SO(N ) invariants for the S-matrix to
commute with the on-shell supersymmetry generators. The relations between the un-
determined coefficients as well as the extension of the formalism to the case of N = 8
SUSY is discussed in the next chapter, where the perturbative results for N = 2, 4,
and 8 theories are presented in a unified manner.

4The upper index on ρA
BC

labels the elements in the list, so that the lower indices are the indices
of the 4× 4 matrices.
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3 Tree-level four particle amplitudes

In order to have an explicit check of the relations put forth in the preceding sections,
in this section we will give results for four-particle scattering in N = 2, 4 and N = 8
SYM at tree-level, from a direct Feynman diagram calculation. Our conventions are
collected in appendix A.

The SYM action may be expressed5 (in mostly positive signature) as

S =
1

g2
Tr

∫
d3x

(
−1

2
FµνF

µν −DµΦiD
µΦi + iλ̄Aγ

µDµλA + ρiABλ̄A[Φi, λB]

)
, (3.1)

where λA are Majorana 2-spinors, with A = 1, . . . ,N , while the Φi are real scalars
with i = 2, . . . ,N . The Yukawa couplings are given by ρiAB = ǫAB for N = 2, by
(2.39) for N = 4, and for N = 8 they are given by the matrices relating the 8v, 8c,
and 8s representations of SO(8), see (A.27). The set of such matrices is completed
with the unit matrix, so that ρCAB = {ρ1AB = δAB, ρ

i
AB}. All fields transform in the

adjoint representation of SU(N). The mode expansions are a slight generalization of
(2.14)

Φi =

∫
d2p

(2π)2
1√
2p0

(
a
†
i(p)e

ip.x + ai(p)e
−ip.x

)
,

Aµ =

∫
d2p

(2π)2
1√
2p0

ǫµ(p, k)
(
a
†
1(p)e

ip.x + a1(p)e
−ip.x

)
,

λA =

∫
d2p

(2π)2
1√
2p0

(
u(p)λ†A(p)e

ip.x + u(p)λA(p)e
−ip.x

)
.

(3.2)

We will be interested in calculating colour-ordered amplitudes. Labelling the four
particles’ gauge group indices as a1, a2, a3, and a4, one generically finds expressions
depending upon the following contractions of the gauge group structure constants

fa1ta2fa3ta4 = −2Tr[T a1T a2T a3T a4 ] + 2Tr[T a2T a1T a3T a4 ]

+ 2Tr[T a3T a1T a2T a4 ]− 2Tr[T a3T a2T a1T a4 ],

fa1ta4fa3ta2 = −2Tr[T a1T a2T a3T a4 ] + 2Tr[T a4T a1T a3T a2 ]

+ 2Tr[T a3T a1T a4T a2 ]− 2Tr[T a3T a2T a1T a4 ],

fa1ta3fa2ta4 = −2Tr[T a1T a3T a2T a4 ] + 2Tr[T a3T a1T a2T a4 ]

+ 2Tr[T a2T a1T a3T a4 ]− 2Tr[T a2T a3T a1T a4 ].

(3.3)

The colour-ordered contributions are those proportional to Tr[T a1T a2T a3T a4 ], and so
come from fa1ta2fa3ta4 and fa1ta4fa3ta2. In what follows we have restored the more
conventional counting of the coupling constant by rescaling all fields by g. We find it
most convenient to present the colour-ordered amplitude at tree-level in the following
way6

〈
φa1
A1

†(p1)φ
a2
A2

†(p2)φ
a3
A3

†(p3)φ
a4
A4

†(p4)
〉
= 2ig2 C (φA1

φA2
φA3

φA4
) Tr[T a1T a2T a3T a4 ]+. . .

(3.4)

5The action for the N = 2 (N = 8) theory is derived by dimensional reduction from the N = 1
theory in d = 4 (d = 10) in appendix A. The N = 4 theory is discussed in section 2.5.

6Note that the coupling g2 should be understood to be made dimensionless via the introduction
of a renormalization scale µ, so that g2 ∼ g2/µ.
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where φ†
A(p) = φa

A
†(p)T a is the creation operator for the given field φA as per the

mode expansions given in (3.2), A denotes a general flavour index, and the “. . .” refers
to non-colour-ordered contributions. All momenta are taken to be in-going, so that∑4

i=1 p
µ
i = 0.

3.1 Four fermion scattering

There are two Feynman diagrams contributing to the scattering of four λ†A(p) exter-
nal states; the gluon exchange and the scalar exchange. We may express these two
contributions in terms of the following two expressions respectively

A(1, 2, 3, 4) ≡

(
ū(p1)γ

µu(p2)
)(
ū(p3)γµu(p4)

)

(p1 + p2)2
,

B(1, 2, 3, 4) ≡

(
ū(p1)u(p2)

)(
ū(p3)u(p4)

)

(p1 + p2)2
.

(3.5)

Note that A(1, 2, 3, 4) = A(2, 1, 3, 4) = A(1, 2, 4, 3) = A(2, 1, 4, 3), while B(1, 2, 3, 4) =
−B(2, 1, 3, 4) = −B(1, 2, 4, 3) = B(2, 1, 4, 3). We find

C (λA1
λA2

λA3
λA4

) =δA1A2
δA3A4

(
B(4, 1, 2, 3) +A(1, 2, 3, 4)

)

−δA1A3
δA2A4

(
B(4, 1, 2, 3)− B(1, 2, 3, 4)

)

−δA1A4
δA2A3

(
A(4, 1, 2, 3) + B(1, 2, 3, 4)

)
.

(3.6)

We note that the amplitude is manifestly SO(N ) invariant.

3.2 Two boson - two fermion tree-level amplitudes

We begin by calculating the amplitudes
〈
aa1i1

†(p1) a
a2
i2

†(p2) λ
a3
A3

†(p3) λ
a4
A4

†(p4)
〉
,

〈
aa11

†(p1) a
a2
i2

†(p2) λ
a3
A3

†(p3) λ
a4
A4

†(p4)
〉
,

〈
aa1i1

†(p1) a
a2
1

†(p2) λ
a3
A3

†(p3) λ
a4
A4

†(p4)
〉
,

〈
aa11

†(p1) a
a2
1

†(p2) λ
a3
A3

†(p3) λ
a4
A4

†(p4)
〉
.

(3.7)

There are contributions from a fermion exchange

CF (a1 a1 λA3
λA4

) = −δA3A4
ū(p4) 6 ǫ(p1)

( 6 p2 + 6 p3)
(p2 + p3)2

6 ǫ(p2)u(p3),

CF (ai1ai2λA3
λA4

) =
((
ρi1
)T
ρi2
)

A4A3

ū(p4)
( 6 p2 + 6 p3)
(p2 + p3)2

u(p3),

CF (ai1 a1 λA3
λA4

) = ρi1A3A4
ū(p4)

( 6 p2 + 6 p3)
(p2 + p3)2

6 ǫ(p2)u(p3),

CF (a1 ai2λA3
λA4

) = ρi2A3A4
ū(p4) 6 ǫ(p1)

( 6 p2 + 6 p3)
(p2 + p3)2

u(p3),

(3.8)
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and a boson exchange,

CB (a1 a1 λA3
λA4

) = −δA3A4

[
−2p1 · ǫ(p2)

ū(p4) 6 ǫ(p1)u(p3)
(p1 + p2)2

+ 2p2 · ǫ(p1)
ū(p4) 6 ǫ(p2)u(p3)

(p1 + p2)2

+ ǫ(p1) · ǫ(p2)
ū(p4) ( 6 p1 − 6 p2) u(p3)

(p1 + p2)2

]
,

CB (ai1ai2λA3
λA4

) = −δi1i2δA3A4

ū(p4) ( 6 p1 − 6 p2) u(p3)
(p1 + p2)2

,

CB (ai1 a1 λA3
λA4

) = −2ρi1AB (p1 · ǫ(p2))
ū(p4)u(p3)

(p1 + p2)2
,

CB (a1 ai2λA3
λA4

) = 2ρi2AB (p2 · ǫ(p1))
ū(p4)u(p3)

(p1 + p2)2
.

(3.9)

The complete tree-level amplitudes are obtained by taking the sum of the boson and
fermion exchanges.

One may determine the remaining amplitudes as follows

C (aDλAλBaC) = C (aCaDλAλB) with p1 → p4, p2 → p1, p3 → p2, p4 → p3,

C (aCλAaDλB) = −C (aCaDλAλB) with p2 ↔ p3 − C (aCλAλBaD) with p3 ↔ p4,

(3.10)

where aC indicates either a scalar or a gauge field, see (3.12). The amplitudes with a
fermion in the first position may be determined through applications of similar rules
starting with

C(λDλCaBaA) = C(aAaBλCλD) with p1 ↔ p4, p2 ↔ p3. (3.11)

3.3 Four boson tree-level amplitudes

The four boson amplitude stems from a boson exchange diagram and a contact diagram
stemming from the 4-boson vertices. We find that the results may be compactly
expressed by enlarging the index i on the scalar field to include a first component
which is identified with the gauge field degree of freedom, i.e.

a
†
A =

(
a
†
1, a

†
i

)
. (3.12)

The color-ordered amplitude is then read-off from the following compact expression

C (aA1
aA2

aA3
aA4

) → 1

(p1 + p2)2

[
Θ(1, 2) · Θ(3, 4) + (p1 + p2)

2

2
FMN(1, 2)FMN(3, 4)

]

+
1

(p1 + p4)2

[
Θ(1, 4) · Θ(3, 2) + (p1 + p4)

2

2
FMN(1, 4)FMN(3, 2)

]
,

(3.13)
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where

ΘM(1, 2) ≡ 2p2 · ǫ(p1) ǫM(p2)− 2p1 · ǫ(p2) ǫM(p1) + (p1 − p2)M ǫ(p1) · ǫ(p2),
FMN(1, 2) ≡ ǫM (p1)ǫN (p2)− ǫN(p1)ǫM(p2),

(3.14)

and where M and N are 4-dimensional (for the N = 2 case), and 10-dimensional (for
the N = 8 case) indices for which

ǫM (p) =





(ǫµ(p), 0, . . . , 0), a†(p)

(0, . . . , 0︸ ︷︷ ︸
i+1

, 1, 0, . . . , 0), a
†
i(p) pM = (pµ, 0, . . . , 0). (3.15)

3.4 Manifestly SO(N ) invariant forms for the amplitudes

Using the spinor formalism developed in section 2, we find that the amplitudes may
be presented in a way which shows manifest SO(N ) invariance. Using (3.12), we find
the following expressions

C
(
aA1

aA2
aA3

aA4

)

= −2δA1A2
δA3A4

〈13〉〈24〉
〈12〉〈34〉 + 2δA1A3

δA2A4
+ 2δA1A4

δA2A3

〈13〉〈24〉
〈23〉〈41〉 ,

C
(
λA1

λA2
λA3

λA4

)

= 2δA1A2
δA3A4

〈13〉2〈23〉
〈12〉2〈41〉 − 2δA1A3

δA2A4

〈34〉
〈12〉 − 2δA1A4

δA2A3

〈13〉2〈12〉
〈14〉2〈34〉 ,

(3.16)

and, defining ρA1A2 ≡ 1
2

(
(ρA1)TρA2 − (ρA2)TρA1

)
,

C
(
aA1

aA2
λA3

λA4

)
= −δA1A2

δA3A4

〈13〉2
〈12〉2

(〈13〉
〈14〉 +

〈23〉
〈24〉

)
+
(
ρA1A2

)

A3A4

〈31〉
〈14〉 ,

C
(
aA1

λA2
λA3

aA4

)
= −δA1A4

δA2A3

〈42〉2
〈41〉2

(〈42〉
〈43〉 +

〈12〉
〈13〉

)
−
(
ρA1A4

)

A2A3

〈24〉
〈43〉 ,

C
(
aA1

λA2
aA3

λA4

)
= −δA1A3

δA2A4

(〈12〉
〈14〉 −

〈23〉
〈34〉

)

+
(
ρA1A3

)

A2A4

(〈12〉
〈14〉 +

〈23〉
〈34〉

)
.

(3.17)

Note that the mixed amplitudes with a fremion in the first position can be obtained
straightforwardly using (3.10) and (3.11). The invariant expressions (3.16) and (3.17)
can straightforwardly be checked to satisfy the associated supersymmetry algebra given
in (A.28). As an explicit example, we consider the N = 2 case in the next subsection.

3.5 Reconstruction of helicity

Using the N = 2 theory as an example, we show how the d = 4 MHV amplitudes
are recovered. Following section 2.2, one may define a three-dimensional analogue of
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helicity

a± =
1√
2
(a1 ± ia2) ,

λ± =
1√
2
(λ1 ± iλ2) ,

(3.18)

from which one finds C(φ+φ+φ+φ+) = C(φ−φ−φ−φ−) = 0 for all fields. The non-zero
amplitudes are as follows

CMHV(aaaa) = 2
〈ij〉4

〈12〉〈23〉〈34〉〈41〉, (3.19)

where i, j denote the positions of the negative (assuming the other two are positive)
or positive (assuming the other two are negative) helicity states. This is of course the
Parke-Taylor formula. One also finds

C(λ+λ+λ−λ−) =
〈13〉
〈24〉C(a+a+a−a−),

C(λ+λ−λ+λ−) =
〈24〉
〈13〉C(a+a−a+a−),

C(λ+λ−λ−λ+) =
〈13〉
〈24〉C(a+a−a−a+),

(3.20)

in agreement with (2.32). The non-zero mixed fermion-boson amplitudes are in agree-
ment with (2.31).

4 Comments on loop corrections for N = 8

We briefly comment on the integrands corresponding to the one-loop correction to the
tree-level amplitudes using the case of N = 8 theory as an example. The method of
unitarity cuts allows us to efficiently evaluate the one-loop contribution to the four-
particle N = 8 amplitudes from the knowledge of the corresponding tree-level quanti-
ties. Furthermore, since the tree-level amplitudes are nothing but the four-dimensional
ones evaluated in a boosted frame where k3 = 0 (c.f. section 2.3), the integrands con-
tributing to the loop corrections to any amplitude can be easily constructed from the
known results in four dimensions. For, instance, consider a four-particle amplitude
M(1h1, 2h2, 3h3, 4h4). In N = 4 SYM in d = 4, the contribution from the s or t channel
cut to this amplitude is generically of the form

M(1h1, 2h2, 3h3, 4h4)|cut =
∑

h,h′

∫
d4k

(2π)4
2πδ+(l21)δ

+(l22)

×Mtree
1 (−lh1 , 1h1, 2h2, lh

′

2 )Mtree
2 (−lh̄′

2 , 3
h3, 4h4, lh̄1 ),

(4.1)

where Mi are the amplitudes that contribute to the particular cut, l1 = k, and l2 =
k − p1 − p2, where k is the loop-momentum. One replaces the delta functions by

i
2πl2

i=1,2

to construct the full integrand of the Feynman integral contributing to the one-

loop correction to M. Given the relations between the amplitudes of the three and
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four-dimensional theories, it readily follows that the corresponding three-dimensional
amplitude is given by

Md=3(1
h1, 2h2, 3h3, 4h4)|cut =

∑

h,h′

∫
d3k

(2π)3
2πδ+(l21)δ

+(l22)

×Mtree
d=3,1(−lh1 , 1h1, 2h2, lh

′

2 )Mtree
d=3,2(−lh̄

′

2 , 3
h3, 4h4, lh̄1),

(4.2)

where, Md=3 are obtained setting the fourth components of all momenta to zero in
the corresponding four-dimensional quantity. In the three-dimensional context, hi
corresponds to U(1) charge carried by the states. All the algebraic identities between
various spinor products that are used to bring the integrands of the one-loop ampli-
tudes in N = 4 SYM to a scalar-box integral continue to hold after the dimensional
reduction to d = 3 as well.

Since there is only one-independent four-particle amplitude - the rest are related
to any given amplitude by the constraints of supersymmetry - we only give the answer
for the one-loop “MHV” amplitude in three dimensions. After accounting for the t
and s channel cuts, one has

〈a+a+a−a−〉1 = −st〈a+a+a−a−〉0I (4.3)

The subscripts (0,1) refer to tree-level and one-loop respectively, while I is the three-
dimensional massless scalar box integral

I =

∫
d3q

(2π)3
1

q2(q + p1)2(q + p1 + p2)2(q − p4)2
. (4.4)

The massless scalar box integral is IR divergent in dimensions d ≤ 4, and so is far
away from convergence in d = 3. A potential method for regulating it is to use the
Coulomb branch as has been done for N = 4 SYM in d = 4 in [31]. We leave this
issue to a further publication.

Although we concentrated on the N = 8 theory here, the d = 3 theories with lower
SUSY also share the property that the one-loop integrands can be gotten straightfor-
wardly through dimensional reduction of the appropriate theory in four dimensions,
and therefore benefit from the application of unitarity-based methods employed there.

5 Relation to SCS theories: D2 vs. M2-brane S-

matrices

In this section, we comment on the realization of the SO(N ) symmetric on-shell super-
symmetry algebra for N ≥ 4 SCS theories. In particular we focus on the N = 8 BLG
theory [21, 22, 23, 24], to which the SYM theory with SU(2) gauge group is expected
to flow in the deep IR. Me make an explicit identification between the on-shell degrees
of freedom of the two theories and show that the “matrix” part of the four-particle
scattering matrix Sijkl({W}; t, s) of (1.1) is the same for both theories. Generally, one
expects the SO(8) symmetry to be manifest for all observables of the SYM theory
only at g2YM → ∞. However, since we have determined R-symmetry structure of the
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four-particle amplitude to all orders in perturbation theory, we are able to compare the
manifestly SO(8) symmetric observables in both the theories in a transparent manner.

In the case of supersymmetric Chern-Simons theories, the construction of Gaiotto
and Witten [32] and its generalizations [33, 34] allow one to construct N ≥ 4 SCS
theories in a unified manner. One starts with a symplectic group Sp(2n), which
contains the gauge group G as a subgroup. Sp(2n) has an antisymmetric form ωAB

and a Cartan metric kmn. The generators of the gauge group tmA
B are 2n×2n matrices

for each value of m. m should be regarded as an “adjoint” index, while A,B can be
thought of as “fundamental” indices. The gauge potential Am

µ has a Lorentz and an
adjoint index as expected. The matter fields (bosons) qAβ and (fermions) ψA

β̇
carry two

different SU(2) (dotted and undotted) indices, apart from the index corresponding to
gauge group A. The matter fields are taken to satisfy the reality conditions

q
†
Aα = ǫαβωABq

B
β , ψ

†
Aα̇ = ǫα̇β̇ωABψ

B

β̇
. (5.1)

The conditions for N = 4 SUSY were derived by Gaiotto and Witten to be

kmnt
m
a(bt

n
CD) = 0, (5.2)

where the brackets denote symmetrization of the indices. The supersymmetry gener-
ators act on the asymptotic states as follows [26]

Qaαβ̇ |qγ〉 = uaǫαγ |ψβ̇〉, Qaαβ̇ |ψγ̇〉 = uaǫβ̇γ̇ |qα〉. (5.3)

The generators close as
{Qaαβ̇ ,Qbγδ̇} = ǫαγǫβ̇δ̇Pab. (5.4)

One can add more matter multiplets, the so called twisted hypermultiplets, (bosons) q̃Aα̇
and (fermions) ψ̃A

α , transforming under a representation of the gauge group generated
by t̃mAB which in general 6= tmAB. The twisting refers to the interchanging of the SU(2)
indices for the bose and fermi particles with respect to the original matter fields. At
this level of generality one can only have N = 4 SUSY. It was observed in [33, 34]
that, if t = t̃, then one has an enhancement of SUSY to N = 5. Furthermore if t = t̃

can be decomposed as (R, R̄), e.g. as in bifundamentals (N, N̄) of SU(N), then one
has enhancement to N = 6 SUSY. Finally, if the representations are real, R = R̄,
then one recovers N = 8 supersymmetry. For the last case, the only known example
is the SU(2) superconformal Chern-Simons theory of BLG; we can make an explicit
identification between the degrees of freedom of the Yang-Mills theory and the N = 8
SCS theory it is expected to be described by at infinite coupling. In this case, one
has eight real scalars XA(I). The SU(2) indices of the preceding discussion have been
promoted to an SO(8) index I. The supersymmetry variation of the scalars is given
by

δXA(I) = iǭΓ I+2ΨA. (5.5)

For the SYM theory, the variation of the seven scalars obtained by the dimensional
reduction of theN = 1, d = 10 theory ΦI=3···9 is given in the three-dimensional notation
by

δΦA(I) = iǭΓ IΨA. (5.6)

The “gauge” indices of the scalars of the BLG theory correspond to a 3-algebra (which
for the BLG theory is an SU(2) algebra in disguise [35]), while for the SYM theory
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they are the adjoint SU(2) indices. However, since we are only interested in the color-
ordered amplitudes, we can disregard the gauge index and immediately see that the
on-shell supersymmetry variations of the seven scalars of the SYM theory coincide
with the variations of XI=1···7. However,

δXA(8) = iǭΓ 11ΨA = iǭΨA, (5.7)

where we have used the d = 10 Weyl condition. The on-shell version of this transfor-
mation is

(QA)α|X8〉 = 1

2
uα|λA〉, (5.8)

which, as we have seen previously is exactly the same as the transformation law for a1,
the scalar that is dual to the gauge field of the Yang-Mills theory. Thus, for the on-shell
supersymmetry algebra XI

BLG ↔ (ΦI , Aµ)SYM . The rest of the on-shell SUSY algebra
is uniquely determined by the requirements of the closure of the generators on to P .
Thus, the full on-shell algebras of the N = 8 SCS and SYM theories are the same.
This immediately implies that the “matrix” structures of the S-matrices of the two
theories are also identical. Sijkl({W}; t, s) for the SYM theory can be readily extracted
from the expressions in section 3.4 which is the same as the corresponding quantity for
the SCS theory found in [26]. Thus the flow of the D2-brane theory to the M2-brane
model (at the level of four-particle amplitudes) corresponds to understanding how
the one independent amplitude which takes on the MHV form (3.19) at extreme weak
coupling, flows to the four-boson scattering amplitude given in [26], at infinite coupling.
Obviously, obtaining the full interpolating form of the four-particle amplitude would be
an enormous progress towards establishing the connection between D2 and M2-brane
theories.

6 Concluding remarks

We have presented an on-shell formalism that reveals several algebraic properties of
S-matrices of three-dimensional Yang-Mills theories that are not evident at the level
of the corresponding Lagrangians. In particular our framework uncovers a hidden
U(1) symmetry, which is an augmentation of the helicity degree of freedom of four-
dimensional parent theories, to a continuous symmetry upon dimensional reduction.
This emergent U(1) lifts the SO(N − 1) symmetry of the gauge theory Lagrangians
to an SO(N ) symmetry of the on-shell algebra and S-matrix. We have been able
to confirm that the manifest SO(N ) invariance is indeed realized by four-particle
amplitudes to all orders in perturbation theory while presenting arguments in favor
of the same phenomenon for higher-particle amplitudes. As an application of the
methodology presented in this work, we used the manifest SO(8) invariance of the
four-particle amplitude of the N = 8 theory to show that the amplitude of the SYM
theory is the same as that of the BLG theory up to a single function. We have also
presented detailed results for the tree-level forms of the four-particle amplitudes of
all the gauge theories considered in this paper while paying special attention to the
SO(N ) invariance of the results. Other than the issue of symmetry enhancement,
we have also shown that recursion relations for d = 3 SYM theories can readily be
obtained via dimensional reduction.
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The results of this paper point to several exciting directions for future research. At
tree-level, it is a simple exercise to obtain three-dimensional results via dimensional
reduction from four dimensions. Indeed, even at the loop-level, it would appear that
the d = 3 integrands are trivial generalizations of their d = 4 counterparts, and in this
sense are determined by the structure of the parent theory, e.g. for N = 4 in d = 4,
this structure is believed to be captured by a Grassmannian [36]. The structure of IR
divergences, however, may be very different in three dimensions. The question of how
the various symmetries and formulations of four-dimensional amplitudes translate to
three dimensions once internal momenta have been integrated over is a very interesting
question, and one which we hope to report on in the near future.

Finally, it would be extremely interesting to build on the connection between the
S-matrices of M2 and D2-brane theories pointed out in this paper. At the level of
four-particle amplitudes, we have reduced the problem of understanding the flow of
N = 8 SYM theory to the BLG theory to understanding the asymptotic behavior
of a single function. Given the recent hints of the existence of a twistorial structure
and Yangian symmetries for the scattering matrices of SCS theories [27, 28, 29] it is
perhaps not inconceivable that the relationship between the SCS and SYM theories can
be understood very concretely at the on-shell level by uncovering the corresponding
algebraic structures for the SYM amplitudes.
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A Dimensional reductions

A.1 Conventions

We work in mostly positive signature. Our fermions are Majorana and obey λ̄A =
λTACd, where Cd is the d-dimensional charge conjugation matrix which is identified
with the zero component gamma matrix. Our scalars are real. Each field in the theory
φ = φaT a, a = 1, . . . , N2 − 1, where the generators T a of SU(N) are N ×N matrices
obeying the following identities

T aT a =
N2 − 1

2N
1, Tr(T aT b) =

1

2
δab, [T a, T b] = ifabcT c, fabcfabd = Nδcd,

{T a, T b} =
1

N
δab1+ dabcT c,

(A.1)

and the gauge covariant derivative is defined as

Dµφ = ∂µφ− i[Aµ, φ],

Fµν = ∂µAν − ∂νAµ − i[Aµ, Aν ].
(A.2)

The free field propagators for the various fields are given by

〈Φa
i (p)Φ

b
j(−p)〉 = −δij

ig2δab

p2
, 〈Aa

µ(p)A
b
ν(−p)〉 = −δab ig

2ηµν

p2
,

〈λaAα(p)λ
b
B β(−p)〉 = −δABδ

ab
ig2pµ

(
γµC−1

3

)
αβ

p2
.

(A.3)
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We have chosen Feynman gauge for the gauge field. The ghost action is not given as
we are working at tree-level.

A.2 Spinor identities

Defining 〈p| ≡ ū(p) and |p〉 ≡ u(p), we note the following relations

〈ij〉 = −〈ji〉,

6 ǫ(p1, p2)u(p3) = −2
〈13〉
〈12〉u(p2) + u(p3),

ū(p3) 6 ǫ(p1, p2) = −2
〈32〉
〈12〉 ū(p1) + ū(p3),

p3 · ǫ(p1, p2) = 2 (p1 · p3)
〈23〉

〈21〉〈31〉 ,

〈1|γµ|2〉〈3|γµ|4〉 = 〈13〉〈42〉+ 〈23〉〈41〉,
〈12〉〈34〉 = 〈23〉〈41〉 − 〈13〉〈42〉,

pi · pj = −〈ij〉2
2

,

〈14〉
〈23〉 = −〈24〉

〈13〉 ,
〈12〉
〈34〉 = −〈13〉

〈24〉 .

(A.4)

The last two relations follow from momentum conservation for 4-particle scattering.

A.3 N = 2 theory

We begin with N = 1 SYM in d = 4, whose action is

SN=1, d=4 =
1

g2
Tr

∫
d4x

(
−1

2
FMNF

MN + iΨ̄ΓMDMΨ

)
, (A.5)

where M,N = 0, . . . , 3 and we are using mostly plus signature

ηMN = diag(−1, 1, 1, 1), (A.6)

and Ψ ia a four-component Majorana spinor, and we use the real representation of the
gamma-matrices provided in (2.8). The charge conjugation matrix is C4 = Γ 0 and
Ψ̄ ≡ ΨTC4. Let us write the Majorana spinor Ψ as follows

Ψ =

(
λ1
λ2

)
. (A.7)

Under dimensional reduction whereby we eliminate the last dimension, i.e. ∂3 → 0,
we obtain the following action

SN=2, d=3 =
1

g2
Tr

∫
d3x

(
−1

2
FMNF

MN + iλ̄Aγ
µDµλA + ǫABλ̄A[Φ, λB]

)
, (A.8)

where A = 1, 2, µ = 0, 1, 2, ǫ12 = +1, and where the real representation of the three-
dimensional gamma matrices used is

γµ =
(
iσ2, σ1, σ3

)
, C3 = iσ2, ηµν = diag(−1, 1, 1), (A.9)
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and λ̄ ≡ λTC3. Note that we have introduced

Φ ≡ A3, (A.10)

and assumed that ∂3 = 0 in the kinetic term for the gauge fields.

A.3.1 Supersymmetry

We note the N = 2 SUSY transformations. Those of the original action (A.5) are

δAN = −2iΨ̄ΓN ǫ, δΨ = FMNΓMN ǫ. (A.11)

We decompose ǫ in terms of d = 3 SUSY parameters

ǫ =

(
η1
η2

)
. (A.12)

We find

δAµ = −2iλ̄AγµηA,

δΦ = −2iǫABλ̄AηB,

δλA = Fµνγ
µνηA + 2∂µΦ ǫABγ

µηB.

(A.13)

From the standard mode expansions (2.14) we have

a
†
1 = ǫµ(p)A

µ(p), a
†
2 = Φ(p), λ

†
A =

1

2p0
u(p)λA(p). (A.14)

Note that u(p)u(p) = 2p0. In appendix B, the supercharge is calculated in the four-
dimensional formalism. Plugging in the mode expansions and using

u(p) 6 p = −2p0ū(p), (A.15)

and
ū 6 ǫ = −ū, (A.16)

which follows from (2.13), one recovers (2.15) and (2.16).

A.4 N = 8 theory

The 10-dimensional gamma matrices, in mostly positive signature, may be expressed
using (2.8), as follows

Γ̃M = γM ⊗ 18, Γ̃ I = iγ0123 ⊗ ηI . (A.17)

where the SO(6) gamma matrices ηI are given by

ηI =
{
σ2 ⊗ σ2 ⊗ σ1, −σ2 ⊗ σ2 ⊗ σ3, σ2 ⊗ 1⊗ σ2,

−σ1 ⊗ σ1 ⊗ σ2, −σ1 ⊗ σ2 ⊗ 1, σ1 ⊗ σ3 ⊗ σ2
}
.

(A.18)

The 6-dimensional charge conjugation matrix is

C6 = σ1 ⊗ 1⊗ 1, (A.19)
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while
η123456 = iσ3 ⊗ 1⊗ 1. (A.20)

This gives

Γ̃ 11 = Γ̃ 0123456789 = i

(
0 12

−12 0

)
⊗
( 14 0

0 −14

)
,

C10 =

(
iσ2 0
0 −iσ2

)
⊗
(

0 1414 0

)
.

(A.21)

Implementing the Weyl and Majorana conditions

Γ̃ 11Ψ = Ψ, Ψ †Γ̃ 0 = ΨTC10 ≡ Ψ̄ , (A.22)

one obtains

Ψ =
1

2




i

0
1
0


⊗




χ1 + iχ2

χ3 + iχ4

0
0


+

1

2




−i
0
1
0


⊗




0
0

χ1 − iχ2

χ3 − iχ4




+
1

2




0
−i
0
1


⊗




0
0

χ5 + iχ6

χ7 + iχ8


+

1

2




0
i

0
1


⊗




χ5 − iχ6

χ7 − iχ8

0
0


 ,

(A.23)

where the χA are real 2-spinors. Redefining the fields in terms of 8 d = 3 Majorana
2-spinors λA

χ1 =

(
(λ1)1
(λ5)1

)
, χ5 =

(
(λ1)2
(λ5)2

)
, χ3 =

(
(λ3)1
(λ7)1

)
, χ7 =

(
(λ3)2
(λ7)2

)
,

χ2 =

(
(λ2)1
(λ6)1

)
, χ6 = −

(
(λ2)2
(λ6)2

)
, χ4 =

(
(λ4)1
(λ8)1

)
, χ8 = −

(
(λ4)2
(λ8)2

)
,

(A.24)

where the index outside the bracket denotes the first or second component of the
spinor, one obtains from the N = 1, d = 10 action

SN=1, d=10 =
1

g2
Tr

∫
d10x

(
−1

2
FM̄N̄F

M̄N̄ + iΨ̄ Γ̃ M̄DM̄Ψ

)
, (A.25)

the N = 8, d = 3 action

SN=8, d=3 =
1

g2
Tr

∫
d3x
(
−1

2
FM̄N̄F

M̄N̄ + iλ̄Aγ
µDµλA + ρiABλ̄A[Φi, λB]

)
, (A.26)

where ρCAB are the matrices relating the 8v (index C = 1, . . . , 8), 8s (index A =
1, . . . , 8), and 8c (index B = 1, . . . , 8) of SO(8). Explicitly we have that AM̄ = (Aµ, Φi),
i = 2, . . . , 8 and

ρCAB =
{1⊗ 1⊗ 1, 1⊗ 1⊗ iσ2,−σ1 ⊗ iσ2 ⊗ σ3, σ3 ⊗ iσ2 ⊗ σ3,−iσ2 ⊗ 1⊗ σ3,

iσ2 ⊗ σ1 ⊗ σ1, 1⊗ iσ2 ⊗ σ1, − iσ2 ⊗ σ3 ⊗ σ1
}
.

(A.27)
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One has that ρDACρ
E
BC + ρEACρ

D
BC = 2δDEδAB, ρ

i
AB = −ρiBA.

The supersymmetry of the theory may be gotten by following steps similar to those
in section A.3.1. The supercharge (B.10) may be used (taking the N = 1 theory in
d = 10) along with the decomposition given in (A.23) and (A.24). The results may be
compactly expressed as

Qα
A|aB〉 =

1

2
uα ρBAC |λC〉, Qα

A|λB〉 = −1

2
uα ρCAB|aC〉. (A.28)

B Supercharge for the N = 1 theory

We begin with the Lagrangian

L = −1

2
FMNF

MN + iΨ̄ΓMDMΨ. (B.1)

The SUSY variations of the fields are as follows

δAN = −2iΨ̄ΓN ǫ, δΨ = FPQΓ
PQǫ. (B.2)

The variation of the action is then (knowing that the interacting theory is supersym-
metric, we set the coupling to zero and so take DM → ∇M (to remain as general as
possible we use the ∇ in place of the partial derivative))

δL = 4iFMN∇M

(
Ψ̄ΓN ǫ

)
+ iΨ̄ΓM∇M

(
FPQΓ

PQǫ
)
+ i (FPQΓ PQǫ)ΓM∇MΨ. (B.3)

The bar operation is Ψ̄ ≡ ΨTC, where CT = −C and CΓMC−1 = −
(
ΓM
)T

. Using
integration by parts on the second term in (B.3) and then reversing the order in the
last term one finds

δL = 4iFMN∇M

(
Ψ̄ΓNǫ

)
− 2i

(
∇M Ψ̄

)
ΓMFPQΓ

PQǫ+∇M

(
iΨ̄ΓMΓ PQFPQǫ

)
. (B.4)

Now we use the fact that

ΓMΓ PQFPQ = 2FMQΓQ + ΓMPQFPQ, (B.5)

to produce

δL = 4iFMN Ψ̄ΓN∇Mǫ− 2i
(
∇M Ψ̄

)
ΓMPQFPQǫ+∇M

(
iΨ̄ΓMΓ PQFPQǫ

)
. (B.6)

Now notice that ΓMPQ∇MFPQ is identically zero since we have antisymmetrized dou-
ble partial derivatives acting on the gauge field in the field strength. Thus, integration
by parts on the middle term above produces

δL =4iFMN Ψ̄ΓN∇Mǫ+ 2iΨ̄ΓMPQFPQ∇Mǫ

+∇M

(
−2iΨ̄ΓMPQFPQǫ

)
+∇M

(
iΨ̄ΓMΓ PQFPQǫ

)

= 2iΨ̄ΓMΓ PQFPQ∇Mǫ+∇M

(
iΨ̄
(
ΓMΓ PQ − 2ΓMPQ

)
FPQǫ

)
,

(B.7)

where we have made use of (B.5) in the second equality. In flat space ∇Mǫ = 0 and
we can build the conserved Noether current associated with the symmetry as usual

jM =
δL

δ(∂MAN)
δAN +

δL
δ(∂MΨ )

δΨ −JM , (B.8)
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where JM is the total derivative arising from the variation of the action, i.e. δL =
∇MJM . We therefore find

jM = 4iFMN Ψ̄ΓNǫ+ iΨ̄ΓMΓ PQǫFPQ −
(
iΨ̄
(
ΓMΓ PQ − 2ΓMPQ

)
FPQǫ

)

= 4iFMN Ψ̄ΓNǫ+ 2iΨ̄ΓMPQFPQǫ

= 2iΨ̄ΓMΓ PQFPQǫ

(B.9)

where we have made use of (B.5) in the last equality. The supercharge is then given
by

Q =

∫

space

j0 = 2i

∫

space

Ψ̄Γ 0Γ PQFPQǫ. (B.10)
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