The simplicity and hidden symmetries of (Super) Yang-Mills and (Super)Gravity
scattering amplitudes suggest the existence of a "weak-weak" dual formulation
in which these structures are made manifest at the expense of manifest
locality. We suggest that this dual description lives in (2,2) signature and is
naturally formulated in twistor space. We recast the BCFW recursion relations
in an on-shell form that begs to be transformed into twistor space. Our twistor
transformation is inspired by Witten's, but differs in treating twistor and
dual twistor variables more equally. In these variables the three and
four-point amplitudes are amazingly simple; the BCFW relations are represented
by diagrammatic rules that precisely define the "twistor diagrams" of Andrew
Hodges. The "Hodges diagrams" for Yang-Mills theory are disks and not trees;
they reveal striking connections between amplitudes and suggest a new form for
them in momentum space. We also obtain a twistorial formulation of gravity. All
tree amplitudes can be combined into an "S-Matrix" functional which is the
natural holographic observable in asymptotically flat space; the BCFW formula
turns into a quadratic equation for this "S-Matrix", providing a holographic
description of N=4 SYM and N=8 Supergravity at tree level. We explore loop
amplitudes in (2,2) signature and twistor space, beginning with a discussion of
IR behavior. We find that the natural pole prescription renders the amplitudes
well-defined and free of IR divergences. Loop amplitudes vanish for generic
momenta, and in twistor space are even simpler than their tree-level
counterparts! This further supports the idea that there exists a sharply
defined object corresponding to the S-Matrix in (2,2) signature, computed by a
dual theory naturally living in twistor space.Comment: V1: 46 pages + 23 figures. Less telegraphic abstract in the body of
the paper. V2: 49 pages + 24 figures. Largely expanded set of references
included. Some diagrammatic clarifications added, minor typo fixe