
J
H
E
P
0
3
(
2
0
1
0
)
0
2
5

Published for SISSA by Springer

Received: January 4, 2010

Accepted: February 18, 2010

Published: March 4, 2010

Unraveling Ln,k: grassmannian kinematics

Jared Kaplan

Theory Group, SLAC National Accelerator Laboratory,

Menlo Park, CA 94025, U.S.A.

E-mail: jaredk@slac.stanford.edu

Abstract: It was recently proposed that the leading singularities of the S-Matrix of

N = 4 super Yang-Mills theory arise as the residues of a contour integral over a Grass-

mannian manifold, with space-time locality encoded through residue theorems generalizing

Cauchy’s theorem to more than one variable. We provide a method to identify the residue

corresponding to any leading singularity, and we carry this out explicitly for all leading

singularities at tree level and one-loop. We also give several examples at higher loops,

including all generic two-loop leading singularities and an interesting four-loop object. As

an example we consider a 12-pt N4MHV leading singularity at two loops that has a kine-

matic structure involving double square roots. Our analysis results in a simple picture for

how the topological structure of loop graphs is reflected in various substructures within

the Grassmannian.

Keywords: Extended Supersymmetry, Duality in Gauge Field Theories, 1/N Expansion

ArXiv ePrint: 0912.0957

Open Access doi:10.1007/JHEP03(2010)025

mailto:jaredk@slac.stanford.edu
http://arxiv.org/abs/0912.0957
http://dx.doi.org/10.1007/JHEP03(2010)025


J
H
E
P
0
3
(
2
0
1
0
)
0
2
5

Contents

1 Introduction and review 1

2 Leading singularities in twistor space 5

3 Unraveling Ln,k 8

3.1 A simple tree-level illustration 9

3.2 All one-loop leading singularities 10

3.3 Back to BCF 15

3.4 Higher loops and general patterns 18

4 Conclusions and future diretions 21

A The residues of LN,K 24

A.1 Jacobians 24

A.2 Existence of tree and one-loop residues 25

B All NMHV residues 26

1 Introduction and review

A proposal was recently made that all of the leading singularities of N = 4 super Yang-Mills

theory in the large N limit arise as the residues of a contour integral over a Grassmannian

manifold [1]. It has been conjectured that these leading singularities may be sufficient to

determine the perturbative S-Matrix of the theory [2, 3], and this has been confirmed for

all one-loop amplitudes [4]–[7, 8] and for a few simple examples at higher loops [9]–[11, 12].

Thus it is hoped that this strikingly new portrayal of the S-Matrix may be part of a new

description of scattering, where the extreme simplicity of the S-Matrix itself takes center

stage and space-time locality is encoded in a complicated way.

The Grassmannian contour integral was discovered through investigations [13]–[18] of

scattering amplitudes and the BCFW Recursion Relations [19]–[26] in twistor space [27]–

[30], inspired in part by the twistor string [31], but it remains a mysterious new object

without any clear first-principled derivation. The case for its validity was based on two

sources of evidence, in addition to the fact that it possess all of the required symmetries [1,

32, 33], including dual conformal invariance [34]–[47]. The first piece of evidence was the

explicit computation of various residues and their subsequent identification among known

leading singularities [1, 33]. The second and perhaps more interesting piece of evidence was

based on an analysis of the residue theorems that follow from generalizations of Cauchy’s

theorem to more than one variable. It was shown in many examples [1] that these residue

theorems are directly related to space-time locality, as they enforce the cancellation of
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Figure 1. We illustrate the way that one-loop leading singularities correspond to certain subspaces

of the Grassmannian. The object on the left is a one-loop leading singularity, or in other words it

is the product of four tree amplitudes evaluated on the kinematics determined by the quadruple

cut of the loop integral. The rectangles in the picture on the right are the non-zero entries of the

k × n matrix characterizing the Grassmannian; each rectangular block shares one row with the

block adjacent to it. It should be noted that only GL(k) invariant statements about this matrix

are physically meaningful.

unphysical poles in and the symmetries of tree amplitudes and the Infrared consistency

of one-loop amplitudes. Some of these residue theorems imply non-trivial relations that

do not follow from the one-loop IR equations [48, 49] and that were conjectured to follow

instead from IR consistency at higher loops.

The purpose of the present paper is to provide a simple picture for how leading sin-

gularities emerge as the residues of the Grassmannian contour integral, which we will refer

to as Ln,k. Our methods allow us to identify a residue of Ln,k corresponding to any given

leading singularity. We will carry out this procedure explicitly at tree level and at one-loop,

and give a few illustrative examples at higher loops. Our analysis will be ‘kinematical’ as

opposed to ‘dynamical’ in a sense that will be made clear below, so we will not actually

prove that every leading singularity is in fact a residue, but we believe our analysis is nev-

ertheless very powerful. We find it especially striking that the topological structure of the

loop graph corresponding to a given leading singularity is reflected in the structure of the

Grassmannian; this can be seen already in figure 1.

Leading singularities and Grassmannian contour integrals are not widely known, so we

will briefly review both. The computation of scattering amplitudes in terms of their leading

singularities is a descendent of generalized unitarity techniques [50]. As will be familiar from

Feynman diagram computations, loop amplitudes involve various logarithms, dilogarithms,

and so on that are themselves functions of the kinematical invariants of the scattering

process. These functions have branch cuts, and one can compute the discontinuities across

these cuts. Those discontinuities may themselves have branch cuts, and we can compute

these discontinuities, and so on, until we are left with some pure rational functions (we
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get many different rational functions depending on which branch cuts we use, and which

loop order we are at). These rational functions are the leading singularities of a scattering

amplitude, and it has been conjectured [3] that the leading singularities are sufficient

information to reconstruct the S-Matrices of N = 4 SYM and N = 8 Supergravity.

At this point the leading singularity may seem like a rather technical construction, but

in fact it is a simple and physical object. The reason is that the branch cut of an integral

(such as a loop integral) is approached when a parameter in the integrand forces the

contour of integration to encircle a pole. In a local quantum field theory, poles in the loop

integrand can only come from propagators, so by isolating the discontinuity across a branch

cut we are forcing the virtual particles in the loops to go on-shell. Leading singularities

arise when all of the loop integrations are fixed (or ‘cut’) by the requirement that various

intermediate particles are on-shell. Thus leading singularities are simply products of tree-

level scattering amplitudes evaluated with very special kinematical configurations. If the

full S-Matrix is determined by leading singularities, then it is determined by the classical

scattering amplitudes of the theory in the simplest possible way.

Now let us describe our Grassmannian contour integral. A Grassmannian manifold

G(k, n) is the space of k dimensional planes in an n dimensional space. A convenient way

to parameterize the points of G(k, n) is with a k × n matrix Cαa, where α = 1, . . . , k and

a = 1, . . . , n; the rows of this matrix span a k plane. Note that different C matrices related

by a GL(k) transformation Cαa → L β
α Cβa correspond to the same k-plane, so GL(k) is a

“gauge symmetry” of our description of the Grassmannian.

In what follows the parameter n will always correspond to the number of particles

in a scattering amplitude or leading singularity, and k will represent the total number of

negative helicity gluons in an all-gluon amplitude (or more generally the R-charge sector),

so MHV amplitudes [51] correspond to k = 2. The contour integral we will consider is an

integral over the C matrices with a very special integrand:

Ln,k(Wa) =

∫

dk×nCαa

(12 · · · k) (23 · · · (k + 1) ) · · · (n1 · · · (k − 1) )

k
∏

α=1

δ4|4(CαaWa) (1.1)

The factors in the denominator are the determinants of the sequential k × k minors of C,

explicitly they are

(m1 . . . mk) = ǫα1...αkCm1α1
. . . Cmkαk

(1.2)

The other piece of the integrand is a product of k superconformal delta functions, and this

is where the dependence on the kinematic variables of the external particles enters. We

represent the kinematics with twistor variables W where

W = (λ̃, µ̃, η̃) (1.3)

and µ̃ is the Fourier conjugate to the spinor variable λ̃, with pµ = λσµλ̃. Note that these su-

per twistor variables W are in the fundamental representation of the superconformal group

PSU(2, 2|4). The anti-commuting η̃ variable is an on-shell superspace coordinate [52]. The
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use of twistor variables for scattering amplitudes has been extensively and pedagogically

discussed in [16], and on-shell superspace in [3]; we will not review them further here.

To begin to better understand Ln,k let us count the number of integration variables

in momentum space. To go to momentum space we just Fourier transform with respect to

the µa variables, giving

Ln,k(λ, λ̃, η) =

∫

dk×nCαa d2kρα

∏k
α=1(Cαaη̃a)

4

(12 · · · k) (23 · · · (k + 1) ) · · · (n1 · · · (k − 1) )
δ2k(Cαaλ̃a)δ

2n(λa − Cαaρα)

(1.4)

where the ρα are extra spinor variables to be integrated over. We see that after eliminating

these extra spinors there are 2n delta functions, but 4 of these encode momentum conser-

vation. This means that 2n− 4 of the coordinates in the Cαa matrix will be fixed by these

delta functions. Also, some k2 of the coordinates can be eliminated by fixing the GL(k)

gauge redundancy of the Grassmannian. All of the remaining (n − k − 2)(k − 2) coordi-

nates are free, so Ln,k should be regarded as a contour integral in this many variables. The

choice of contour or residue can be viewed as providing equations that fix the integration

variables, but we can perform the contour integral and solve the delta function constraints

in whatever order we prefer. In [1] we solved the delta function constraints first, and only

then performed the contour integration, but we will find the opposite order to be more

enlightening in what follows.1

Once the contour integration is performed so that we are left with one particular

residue, the full Grassmannian will be reduced to some 2n − 4 dimensional algebraic sub-

space parameterized by a highly constrained Cαa matrix. As a very concrete example that

we will derive below, the matrix

C =











c21 1 0 0 0 0 c27 c28

c41 c42 c43 1 0 0 0 0

0 0 c63 c64 c65 1 0 0

0 0 0 0 c85 c86 c87 1











(1.5)

corresponds to a one-loop leading singularity with a 4-pt MHV amplitude at each of the

four corners of the ‘box’ pictured in figure 1. This is a rather remarkable result, because it

means that all leading singularities essentially only depend on kinematic invariants through

2n − 4 special parameters, whereas we might expect them to depend on the n(n − 1)

invariants 〈ij〉 and [ij]. This is especially surprising when we remember that this is an

N = 4 supersymmetric result, so it holds for all of the various helicity combinations.

The methods we will develop in the following sections will allow us to pick out the

special subspaces within the Grassmannian that give rise to any given leading singularity.

We will show that there is a very simple way to glue together many smaller copies of Ln,k

so that they sit as subspaces of a larger Grassmannian, where the smaller copies are to be

interpreted as tree amplitudes (or general leading singularities) at the vertices of a loop

diagram that has been ‘cut’ to make a larger leading singularity.

1One might worry that there exist contours of integration that are incompatible with the delta function

constraints. We will never be led to such ‘bad’ contours, although they are a reasonable motivation for

solving the delta function constraints before performing the contour integration.
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Once we have identified an appropriate subspace within the larger Grassmannian,

there still remains the question of whether this subspace can actually be obtained as a

residue. We show that this is extremely plausible in the appendix. However, our analysis

is ‘kinematical’ as opposed to ‘dynamical’ because we are not able to actually compute

these residues in general. A full proof that all leading singularities are residues of Ln,k

would require this computation, and this is beyond the scope of the present work.

In the next section we show how leading singularities can be written in twistor space,

and in particular how they can be computed by ‘gluing’ together other leading singularities.

Then in section three we begin by motivating our analysis, and then we proceed to identify

all tree and one-loop leading singularities. At the end of section three we give some very

non-trivial higher loop examples, including all generic two-loop leading singularities and a

four loop object with an interesting topological structure (as a loop graph). Also, to show

the power of our method we provide an explicit 12-pt N4MHV two-loop example whose

kinematic structure involves square roots of square roots. With section four we conclude

and discuss future directions. In an appendix we give some details of the computation of

the residues themselves, including an argument for the existence of the tree and one-loop

residues, and we give an explicit solution for the NMHV (k = 3) sector.

2 Leading singularities in twistor space

Twistor variables are an elegant representation of massless on-shell states, so phase space

integrals such as
∫

d4ℓδ(ℓ2)M1(ℓ)M2(−ℓ) (2.1)

can be written very simply in twistor space as
∫

D3WP M1(WP )M2(WP ) (2.2)

This is an instance of the well-known Penrose transform [27]. It is essentially guaranteed

by Lorentz invariance and the kinematics of twistor space — in other words, since twistors

fully parameterize light-like states, what else could an integral over twistor space be but a

dLIPS integral — but let us derive the result explicitly.

We begin by recalling that the momentum vector ℓµ can be written in spinor language

as the 2 × 2 matrix

ℓµσµ
αα̇ =

(

ℓ+ ℓ⊥

ℓ̃⊥ ℓ−

)

(2.3)

We will use (2, 2) signature to facilitate calculation, but all of the results we will obtain

can be analytically continued back to the usual (3, 1) Minkowski signature. Now ℓ2 is the

determinant of ℓ · σ, so we can re-write the phase space integral as
∫

d4ℓδ(ℓ11̇ℓ22̇ − ℓ12̇ℓ21̇)M1(ℓ)M2(−ℓ) (2.4)
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and we can do the integral by, say, integrating over ℓ11̇ to give

dℓ22̇dℓ12̇dℓ21̇

|ℓ22̇|
(2.5)

If we parameterize the remaining integral with ℓaȧ = λaλ̃P ȧ and allow λȧ to run from −∞

to ∞, then the integral becomes
∫

d2λDλ̃P M1(λ, λ̃P )M2(λ, λ̃P ) (2.6)

where Dλ̃P = 〈λ̃ dλ̃〉 is the projective measure on RP 1. It is easy to go from this spinorial

representation of the integral to twistor space. If we Fourier-represent the dependence of

M1 and M2 on λ, we find
∫

Dλ̃P d2λd2µ̃1d
2µ̃2e

i[µ̃1−µ̃2,λ]M1(λ̃, µ̃1)M2(λ̃, µ̃2) =

∫

D3WP M1(WP )M2(WP ) (2.7)

with the projective twistor variable WP = (λ̃, µ̃). This is the result we wished to obtain.

We will now make use of the twistor transform in order to represent leading singulari-

ties. A one-loop leading singularity

is given in momentum space by

∫ 4
∏

i=1

d4ℓiδ(ℓ
2
i )M1(ℓ1,−ℓ2, . . .)M2(ℓ2,−ℓ3, . . .)M3(ℓ3,−ℓ4, . . .)M4(ℓ4,−ℓ1, . . .) (2.8)

where we are including the momentum conserving delta functions in the tree amplitudes

Mi. The 16 integration variables in the ℓi are completely fixed by momentum conser-

vation, which provides 12 constraints, and the condition that ℓ2
i = 0, which provides 4
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constraints. The ℓi may in general become complex, and we define the integral in this case

by analytic continuation.2

In maximally supersymmetric theories we must also sum over the helicities of the par-

ticles running in the loop; this is accomplished by integrating over the on-shell superspace

variables η or η̃ [52]; for extensive discussions and examples of that formalism see [3]. In

twistor space the one-loop leading singularity of N = 4 super Yang-Mills turns into the

superconformal integral

∫ 4
∏

i=1

D3|4WiM1(W1,W2, . . .)M2(W2,W3, . . .)M3(W3,W4, . . .)M4(W4,W1, . . .) (2.9)

where W = (W,η). This has a simple diagrammatic representation as

where we have not explicitly indicated the external states of the amplitudes Mi.

It may seem that we have not made much progress, since we have merely substited

twistor space integrals for phase space integrals. However, the twistor space integrands will

always be delta functions, so performing the twistor space integrals will only involve some

simple linear algebra and book-keeping, making them vastly simpler than their momentum

space counterparts. This fact is an enormous advantage, and it will allow us to begin to

unravel the structure of the Grassmannian contour integral Ln,k.

It is straighforward to write higher-loop leading singularities in the same way — be-

ginning with some L loop diagram with 4L propagators, we simply replace each prop-

agator with a twistor variable Wi, and integrate over it. Those familiar with ‘Hodges

Diagrams’ [13]–[16] may find the picture above familiar, as it is a sort of generalization

of those diagrams. In fact, our diagrammatic representation of leading singularities is in

some sense a realization of Hodges’ idea of ‘twistor quilts’ [14] for loop amplitudes.

2We will not delve into this issue in detail because it will not be relevant for our analysis, but a more

precise definition involves re-interpeting the original loop integral as a contour integral around the four 1/ℓ2i
poles
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3 Unraveling Ln,k

In [1] it was conjectured that the residues of the multi-dimensional contour integral

Ln,k(Wa) =

∫

dk×nCαa

(12 · · · k) (23 · · · (k + 1) ) · · · (n1 · · · (k − 1) )

k
∏

α=1

δ4|4(CαaWa) (3.1)

are in one-to-one correspondence with the leading singularities of the S-Matrix of N = 4

super Yang-Mills theory. This conjecture was based in part on evidence accumulated by

explicitly computing residues and then identifying them with known leading singularities.

A proof of this conjecture would require a specification of the residues of Ln,k along with

a ‘dictionary’ relating them to the leading singularities. In this section we will show how

any leading singularity can be identified with a residue of Ln,k.

In order to relate leading singularities to residues, we need a way to label them both.

A leading singularity can be specified by drawing an L loop diagram with 4L propagators.

When each of these propagators is cut, we will be left with a product of tree amplitudes

evaluated with very special kinematics. If these tree amplitudes are MHV or anti-MHV,

then we have a single term, or a ‘primitive’ leading singularity. Otherwise, we will have

a sum of terms, and although one can regard this sum itself as a leading singularity, it is

the individual terms in the sum that are residues of Ln,k. So we should proceed to write

each tree amplitude as a sum of terms via the BCFW recursion relations; choosing any one

term from each tree amplitude gives a primitive leading singularity.

This last step in the definition may seem a bit arbitrary, but fortunately it can be

given a nice interpretation. As originally shown by Britto, Cachazo, and Feng [19], each

term in the BCFW recursion relations can be interpeted as the quadruple cut of a one-

loop box (if the tree amplitudes at the corners of the box are all MHV or anti-MHV,

this is just a one-loop leading singularity). This means that wherever we see a non-MHV

tree amplitude, we can replace it with a sum over quadruple cuts of one-loop boxes. This

process expresses an L loop object with 4L cut propagators in terms of an L+1 loop object

with 4L + 4 cut propagators. If we repeat the process until it terminates, we will be left

with a unique product of MHV and anti-MHV tree amplitudes at L + δL loops evaluated

on the kinematics specified by cutting the 4L + 4δL propagators. Thus each and every

term in a leading singularity computed at L loops is in fact itself a leading singularity at

L + δL loops.

We must also label the residues of Ln,k. The denominator of Ln,k is a product of n

determinants, so in simple cases it is sufficient to specify on which of these determinants

we are evaluating the residue (or in other words, which factors in the denominator vanish).

However, for even moderately large n and k this is inefficient because the residues are highly

‘composite’ [1], meaning that not only the determinant factors in the denominator vanish,

but also their derivatives, second derivatives, and so on. Furthermore, the equations that

follow by requiring that these determinants vanish can have a very large multiplicity of

solutions, so this method of labeling does not specify a unique residue.

This line of thought suggests a better way of labeling the residues. A residue is given

by solving a large system of algebraic equations for coordinates on the Grassmannian, so
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it is natural to label the residue by the solution itself. In particular, since points in the

Grassmannian can be specified by a k×n matrix Cαa modulo a GL(k) gauge redundancy,

it is natural to label residues by specifying the explicit form of C. Naively this sounds

like it could be very involved, since one might expect complicated algebraic relationships

among the Grassmannian coordinates. However, we will see that even in very general

cases the C matrix takes a form that is both simple and transparently connected to the

physics. For instance, in the case of tree level and one-loop leading singularities we will

see that the C matrix can be fully specified by stating which of its entries are zero in

a particularly convenient GL(k)-gauge. We will also see that the topology of the loop

diagram representing the leading singularity is beautifully reflected by its corresponding

Grassmannian locus.

Although we will show how to identify a residue of Ln,k corresponding to any leading

singularity, our analysis will not result in a complete proof that these leading singularities

are actually given by the residues in question. The deficit is due to our inability to compute

general composite residues. This one remaining issue is a precise mathematical problem

with a known answer, but its solution should be physically interesting, as the computation

of composite residues contains most of the dynamical information of Ln,k.

3.1 A simple tree-level illustration

In [16, 17] it was shown that tree level scattering amplitudes in N = 4 super Yang-Mills

theory become very simple when transformed to twistor space. These twistor transformed

amplitudes gave way to new expressions for amplitudes in both twistor space and mo-

mentum space using the so-called ‘link representation’. As an example, the 6-pt NMHV

amplitude can be expressed as a sum of terms of the form

U =

∫

dciJeiciJWi·ZJ
δ(c52)

c12c32c54c56c14c36(c14c36 − c16c34)
(3.2)

in the link representation, where we are ignoring an overall sign factor. For our purposes,

the only thing to notice about this formula is that c52 is being set to zero by a delta

function.

In [1] we described the contour integral Ln,k, which we conjectured contains all the

leading singularities in the N = 4 theory as its residues. We first discovered this formula

by trying to interpret δ(c52) not as a delta function but as a contour integral around the

pole 1/c52. In fact one can write

L6,3 =

∫

dciJeiciJWi·ZJ
1

c52c36c14(c12c54 − c14c52)(c14c36 − c16c34)(c36c52 − c32c56)
(3.3)

and observe that L6,3 reduces to the U above on the residue of the pole c52 = 0. The

discovery of Ln,k was motivated by a desire to understand how the locality of the S-Matrix

is encoded in efficient, on-shell methods such as the BCFW recursion relations, where

locality seems to be quite obscure. In fact as shown in [1] locality is encoded via the very

many residue theorems that relate the various residues of Ln,k.
3

3For a different and very interesting approach to this question see [53] and also [18].
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However, now that Ln,k is known, we can reverse the historical logic. We know that the

U above is a term in a 6-pt NMHV tree amplitude, so we could use its explicit form in the

link representation to determine which residue of L6,3 it comes from. In what follows we

will unravel the embedding of leading singularities among the residues of Ln,k by identifying

them with (very general) link-representation formulas. In the following three sections we

will recursively identify as residues all the one-loop and tree-level leading singularities of

N = 4 super Yang-Mills, and then explain how the method generalizes to arbitrary loop

order. In the appendix we use our method to give an explicit formula for all NMHV

(k = 3) residues.

3.2 All one-loop leading singularities

Now we will use what we have learned to identify the residues corresponding to all one-

loop leading singularities. To do this we need only compare the expression for LN,K with

the integral

∫ 4
∏

i=1

D4|4WiL
i
ni,ki

(Wi,Wi+1,Wai
) (3.4)

This integral can be visualized as the diagram

where we are integrating over the Wi with i = 1, 2, 3, 4, which correspond to the on-shell

intermediate propagators in momentum space, and each Li has ni−2 external particles that

are not explicitly displayed. We have labeled the Wai
with an index ai where i = 1, 2, 3, 4

denotes the particular Li
ni,ki

to which it belongs, and we have a total number of particles

N = n1 +n2 +n3 +n4−8 and number of negative helicities K = k1 +k2 +k3 +k4−4. Since

the four Li depend on the W variables only through δ4|4(cαaWa), performing the integrals

is a matter of book-keeping.

We will choose to only partially fix the GL(ki) redundancy of the matrices Ci
αiai

so that

Ci
αiai

=

















1 ci,1i
. . . ci,(n−2)i

0

0 Cαi,1i
. . . Cαi,(n−2)i

0
...

...
. . .

...
...

0 Cαi,1i
. . . Cαi,(n−2)i

0

0 ci+1,1i
. . . ci+1,(n−2)i

1

















(3.5)
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or in other words, we have fixed the first and last columns of the matrix, which correspond

to the Wi variables over which we are going to integrate, but we have not fixed the other

columns and rows. There is a subtlety when treating the anti-MHV 3-pt amplitude, because

its C matrix has only a single row and therefore we can only fix it to be C = (1, c11i
, c12).

We will return to treat this special case at the end.

We will choose to use a delta function from Li to perform the integral over Wi. Naively

one would expect to simply solve for the Wi, but the twistor variables are projective, so

we can only conclude that

Wi = τi

∑

ai

−ci,ai
Wai

(3.6)

for some non-zero τi. This new τi is an arbitrary parameter, so we can use it to fix one of

the c variables, so e.g. we could set ci,1i
= 1 for each i = 1, 2, 3, 4. This follows because we

can then absorb τi everywhere else it appears by re-scaling the other variables. However

we will ignore the τi for now in order to avoid breaking any symmetries. Wi appears in

both Li and Li−1; subsituting it into the latter takes

δ4|4(ci,ai−1
Wai−1

+ Wi) → δ4|4(ci,ai−1
Wai−1

− ci,ai
Wai

) (3.7)

and now we are done! The one-loop leading singularity corresponds to LN,K with C matrix

fixed to the form

C =



































































c1,11
. . . c1,(n−2)1 0 . . . 0 0 . . . 0 cα,14

. . . cα,(n−2)4

cα,11
. . . cα,(n−2)1 0 . . . 0 0 . . . 0 0 . . . 0

...
...

...
...

...
...

...
...

...
...

...
...

cα,11
. . . cα,(n−2)1 0 . . . 0 0 . . . 0 0 . . . 0

cα,11
. . . cα,(n−2)1 c2,12

. . . c2,(n−2)2 0 . . . 0 0 . . . 0

0 . . . 0 cα,12
. . . cα,(n−2)2 0 . . . 0 0 . . . 0

...
...

...
...

...
...

...
...

...
...

...
...

0 . . . 0 cα,12
. . . cα,(n−2)2 c3,13

. . . c3,(n−2)3 0 . . . 0

0 . . . 0 0 . . . 0 cα,13
. . . cα,(n−2)3 0 . . . 0

...
...

...
...

...
...

...
...

...
...

...
...

0 . . . 0 0 . . . 0 cα,13
. . . cα,(n−2)3 0 . . . 0

0 . . . 0 0 . . . 0 cα,13
. . . cα,(n−2)3 c4,14

. . . c4,(n−2)4

0 . . . 0 0 . . . 0 0 . . . 0 cα,14
. . . cα,(n−2)4

...
...

...
...

...
...

...
...

...
...

...
...

0 . . . 0 0 . . . 0 0 . . . 0 cα,14
. . . cα,(n−2)4



































































(3.8)

where we have eliminated the minus signs in front of the ci,ai
variables by a simple redef-

inition. We did not completely fix the GL(ki) gauge redundancies of the Li
ni,ki

in order

to avoid obscuring the structure of this matrix, but in practical computations one would

fix these redundancies in some way. Also, although we have written the matrix as almost-

block-diagonal, the diagonal of the matrix plays no special role — we are free to cyclicly
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permute the columns and rows. We should think of this C matrix ‘picture’ as a specification

of the linear dependencies among its various columns.

Let us count the number of free variables in momentum space to show that the contour

of integration has been completely specified. After fixing the GL(ki) redundancies and

choosing a particular residue for the Li
ni,ki

we are left with 2ni − 4 variables in each Li [1],

which would be fixed by delta functions were we to transform back to momentum space.

This means that there are a total of 2N free variables after the individual Li contours have

been specified. However, we saw above that there are four τi parameters which appear as a

consequence of the fact that we have integrated over R4 instead of RP 3 four times; we can

use these to eliminate four c variables by setting them to 1. If we take LN,K to momentum

space we find 2N − 4 delta function constraints, which is exactly equal to the number of

free variables.

Before giving some examples let us return to the case where one of the Li, say L1, is

an anti-MHV 3-pt amplitude. Let us fix its C ‘matrix’ to be

C = (1, c111
, c12) (3.9)

so that the amplitude becomes

L1
3,1 =

∫

dc111
dc12

c111
c12

δ4|4(W1 + c111
W11

+ c12W2) (3.10)

In accord with our choices above we will use this delta function to integrate over W1, giving

W1 = τ1(−c111
W11

− c12W2) → c111
W11

+ W2 (3.11)

with an appropriate choice of the free parameter τ1 and re-scaling of c111
. Now we have

completely eliminated L1, its only remnant being the c111
parameter. As before, we will

solve for W2 using a delta function from L2, so the end result is a C matrix for LN,K of

the form

C =



















































c1,11
c2,12

. . . c2,(n−2)2 0 . . . 0 cα,14
. . . cα,(n−2)4

0 cα,12
. . . cα,(n−2)2 0 . . . 0 0 . . . 0

...
...

...
...

...
...

...
...

...
...

0 cα,12
. . . cα,(n−2)2 0 . . . 0 0 . . . 0

0 cα,12
. . . cα,(n−2)2 c3,13

. . . c3,(n−2)3 0 . . . 0

0 0 . . . 0 cα,13
. . . cα,(n−2)3 0 . . . 0

...
...

...
...

...
...

...
...

...
...

0 0 . . . 0 cα,13
. . . cα,(n−2)3 0 . . . 0

0 0 . . . 0 cα,13
. . . cα,(n−2)3 c4,14

. . . c4,(n−2)4

0 0 . . . 0 0 . . . 0 cα,14
. . . cα,(n−2)4

...
...

...
...

...
...

...
...

...
...

0 0 . . . 0 0 . . . 0 cα,14
. . . cα,(n−2)4



















































(3.12)

Let us now check these very general results with a few examples. If we want to obtain

a box coefficient (one-loop leading singularity) in the MHV sector, we must make one pair
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of opposite corners MHV and the other pair anti-MHV 3-pt amplitudes. This gives a C

matrix structure

C =

(

∗ ∗ . . . ∗ 0 ∗ · · · ∗

0 ∗ . . . ∗ ∗ ∗ · · · ∗

)

(3.13)

where there are still two τ parameters to be specified (in other words, we can rescale the

two rows independently by an arbitrary factor, setting a c parameter in each equal to 1).

One might wonder what would have happened if we made the two anti-MHV 3-pt am-

plitudes adjacent. Physically, this sort of leading singularity must vanish; our results give

C =

(

∗ ∗ ∗ · · · ∗

0 0 ∗ · · · ∗

)

(3.14)

In this case the sub-determinant (1, 2) vanishes. If we interpret this as 1/0 it means that

our result is not well-defined. If we attempt to view Ln,2 as a contour integral evaluated on

the residue (1, 2), then when we return to momentum space we would find an additional

constraint on the momenta beyond momentum conservation, or in other words we would

find that this object vanishes for generic momenta. Thus we see that Ln,k “knows” that

this is not a viable leading singularity.

Finally let us consider a much more non-trivial example. In the case N = 8, K = 4

there is a single four mass box which corresponds to ni = 4, ki = 2 for all i, or in other

words this is a box with a 4-pt MHV amplitude at each corner. Eliminating the four extra

variables, we obtain a matrix structure

C =











∗ 1 0 0 0 0 ∗ ∗

∗ ∗ ∗ 1 0 0 0 0

0 0 ∗ ∗ ∗ 1 0 0

0 0 0 0 ∗ ∗ ∗ 1











(3.15)

We immediately see that the determinants (I, I + 1, I + 2, I + 3) vanish for I odd but that

they are non-vanishing for I even. This was precisely the residue found in [1] to correspond

to this particular leading singularity.

A worked example. In the analysis above we saw how one-loop leading singularities

correspond to particular C matrix structures, or in other words, to particular subspaces

of the Grassmannian. However, we did not show how one obtains these C matrices from

contour integration, and we did not work out the resulting residues. We will go through

these procedures in detail for the n = 8, k = 4 example, and then we will explain how

they generalize.

We would like to fix the GL(4) redundandancy so that

C =











c21 1 x3 0 0 0 c27 c28

c41 c42 c43 1 x5 0 0 0

0 0 c63 c64 c65 1 x7 0

x1 0 0 0 c85 c86 c87 1











(3.16)
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However, there is a non-trivial Jacobian that arises when we fix the GL(4) redundancy in

this way. The easiest way to compute this Jacobian is to write our C matrix as a GL(4)

transformation acting on an ‘old’ matrix

Cold =











∗ 1 ∗ 0 ∗ 0 ∗ 0

∗ 0 ∗ 1 ∗ 0 ∗ 0

∗ 0 ∗ 0 ∗ 1 ∗ 0

∗ 0 ∗ 0 ∗ 0 ∗ 1











(3.17)

so that

Cnew
αa = J β

α (Cnew)Cold
βa (3.18)

We know that the measure is simply dk(n−k)Cold, so we can compute the Jacobian in terms

of the new variables using J−1Cnew. It is straightforward to compute this Jacobian in

general, which we have done in the appendix. In our case, the Jacobian is

(c41 − c21c42)(c63 − c43c64)(c85 − c65c86)(c27 − c87c28) (3.19)

The product of 4 × 4 determinants in the denominator of the integrand of L8,4 is

8
∏

i=1

Di = (x1(c63 − c43c64 + x3c42c64))(c85(c63 − c43c64 + x3c42c64)) . . .

= (c41 − c21c42)
2(c63 − c43c64)

2(c85 − c65c86)
2(c27 − c87c28)

2

×c41c63c85c27 · x1x3x5x7 + O(x5) (3.20)

Note that the four factors on the first line are squared, but one of each will be canceled by

the Jacobian. Taking this into account, we see that L8,4 takes the simple form

L8,4 =

∮

dx1dx3dx5dx7

x1x3x5x7

×

∫

d12ciJ δ4|4(CαaWa)

c41c63c85c27(c41 − c21c42)(c63 − c43c64)(c85 − c65c86)(c27 − c87c28)
(3.21)

The contour integral over the x immediately sets them all to zero, so we have neglected

higher order terms in these variables. The denominator is precisely what we get from

the denominators of the four MHV amplitudes at the corners of the one-loop leading

singularity (i.e. the ‘box coefficient’; note that four c parameters have been eliminated

using τ variables).

Now we can Fourier transform from twistor space back to momentum space. The most

general way to do this is to write
∫

d2µae
i[λ̃aµa]δ4(CαaWa) = δ2(Cαaλ̃a)

∫

d2ραδ2(λa − Cαaρα) (3.22)

so now the c variables must satisfy

Cαaλ̃a = 0 and λa − Cαaρα = 0 (3.23)
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p1 η1

p2 η2

1 2 =
∑

L∪R=All

∫

dN η
η 1

P 2

η

p1(zP ) η1(zP )

p2(zP ) η2

L R

Figure 2. The BCFW Recursion Relations in maximally supersymmetric theories.

where the ρα are auxiliary spinor variables. Clearly the first set of equations is linear in

the C variables. However, because the auxiliary ρα are free, the second set of equations is

in general quadratic. Something interesting has occurred, as the entire kinematic structure

of the leading singularity is encoded in these simple quadratic equations! Note also that

any multiplicity of solutions will come entirely from these momentum space equations. We

expect that in general the multiplicity will exactly match the multiplicity of solutions to

the 4L cut conditions at L loops.

The procedure that we have followed generalizes to the computation of any one-loop

leading singularity, with one crucial caveat — in general, the contour integral over the x

variables will not be so simple. We will generically have a large C matrix, the number of

x variables will be much larger than the number of external particles, and the residue at

x = 0 will be highly composite. However, we have a very definite expectation, namely that

this residue must equal the product of the four Lni,ki
denominators. In the appendix we

argue for the existence of the residue, but we do not know how to compute it and prove

that our expectation is correct.

3.3 Back to BCF

The BCFW recursion relations [19]–[26] are an extremely efficient method for computing

tree level scattering amplitudes in a variety of theories. Some key features of these recursion

relations are that they compute scattering amplitudes using purely on-shell information,

and that they assemble local amplitudes from non-local pieces. As an example, the 6-pt

amplitude in Yang-Mills theory is

M+−+−+−
BCFW =

(

1 + r2 + r4
)

[

〈46〉4[13]4

[12][23]〈45〉〈56〉(p4 + p5 + p6)2

×
1

〈6|5 + 4|3]〈4|5 + 6|1]

]

(3.24)

when computed with BCFW (where r cyclicly permutes the external particles i → i + 1).

Note that the factor on the second line has unphysical poles, and therefore it could never

come from the Feynman diagrams of a local theory. One of the main motivations underlying

the discovery of Ln,k was to find a way to explain how local amplitudes arise from non-

local pieces.
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The BCFW recursion relations were originally discovered by Britto, Cachazo, and

Feng [19] in a study of the IR equations as applied to one-loop leading singularities [55]–

[56]. This means that each term in the recursion relations is a one-loop leading singularity,

so we can use our techniques from the previous subsection to identify the contours of

integration in Ln,k that correspond to tree amplitudes.

To be more specific, we want to look at one-loop leading singularities with (n1, k1) =

(3, 2) and (n2, k2) = (3, 1), or in other words we take these two neighboring corners of the

box to be MHV and anti-MHV 3-pt amplitudes

where particles 1 and 2 correspond to the analytically continued particles in the BCFW

recursion relations, and the small unlabeled circles represent projective W variables to be

integrated over. Using our solution from the previous subsection, we find a C matrix in

LN,K of the form

C =





































c111
1 0 . . . 0 cα,2L

. . . cα,(n−1)L

0 c212
c2,2R

. . . c2,(n−1)R
0 . . . 0

0 0 cα,2R
. . . cα,(n−1)R

0 . . . 0
...

...
...

...
...

...
...

...

0 0 cα,2R
. . . cα,(n−1)R

0 . . . 0

0 0 cI,2R
. . . cI,(n−1)R

cI,2L
. . . cI,(n−1)L

0 0 0 . . . 0 cα,2L
. . . cα,(n−1)L

...
...

...
...

...
...

...
...

0 0 0 . . . 0 cα,2L
. . . cα,(n−1)L





































(3.25)

where we have indexed most of the c’s with L and R to show that these belong to the

usual ML and MR of BCFW, and we have used a label I for ‘intermediate’ for the one

overlapping row. It is worth noting that this matrix structure is not so surprising — it

is perhaps the first thing one might guess. The BCFW form of the amplitude is being

represented by two blocks that correspond to ML and MR and which share a row that

corresponds to the intermediate particle.
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Let us check our general formula with a few examples. The simplest example is the

computation of an MHV amplitude by BCFW; for this case we would find a C matrix

C =

(

∗ 1 0 ∗ · · · ∗

0 ∗ ∗ ∗ · · · ∗

)

(3.26)

None of the sub-determinants (I, I + 1) vanish, which is exactly what we would expect

for the C matrix of an MHV amplitude. The GL(2) symmetry has not been fully fixed

because we have yet to use the τL projectivity parameter, we can use it to obtain the fully

fixed matrix

C =

(

∗ 1 0 ∗ · · · ∗

0 ∗ 1 ∗ · · · ∗

)

(3.27)

from which one could compute the MHV amplitude in momentum space.

As another example, consider the 6-pt NMHV amplitude. One of the terms used to

construct it comes from applying BCFW where ML and MR are both 4-pt amplitudes.

In this case we would take the C matrix to be

C =







∗ 1 0 0 ∗ ∗

0 ∗ ∗ ∗ 0 0

0 0 ∗ ∗ ∗ ∗






(3.28)

We see that only one of the determinants (I, I + 1, I + 2) vanishes, namely the one with

I = 5. This is precisely what was found in [1]. As another example, consider again the 6-pt

amplitude constructed from a 5-pt and a 3-pt MHV amplitude, this would have C matrix

C =







∗ 1 0 0 0 ∗

0 ∗ ∗ ∗ ∗ 0

0 0 ∗ ∗ ∗ ∗






(3.29)

so we see that the I = 3 determinant vanishes.

Using these results one can recursively identify the contours of integration that corre-

spond to tree amplitudes. A C matrix of the form that we have identified in this section

will give terms that can contribute to tree level amplitudes as long as the contours of in-

tegration for cL and cR are chosen to give components of tree level amplitdues. To obtain

the full BCFW recursion relations one simply sums over the sets L and R with appropriate

contours for the sub-Grassmannians.

The analysis of this subsection and the last is one-half of a constructive proof that all

one-loop leading singularities are contained in Ln,k for some choice of contour. This follows

because (1) we have (recursively) shown that all tree amplitudes are contour integrals via

BCF and the IR equations, and (2) we have identified the contour for one-loop leading

singularities given the sub-contours for the four tree amplitudes at the corners of the

box. Our method also partially explains why terms that come from non-adjacent BCFW

deformations do not arise as residues of Ln,k — due to color ordering, these terms cannot be

written as one-loop leading singularities and so they cannot be found among the residues.

However, our results are only half of a proof because we have not explicitly computed the

residues themselves, but only shown how to obtain the appropriate contours of integration.
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Figure 3. A diagram representing the infinite class of leading singularities that can be identified

by applying our one-loop analysis recursively, expanding the objects at the corners of a one-loop

box into new boxes. The heavy black dots are four point amplitudes linking boxes together at

their corners.

3.4 Higher loops and general patterns

In the previous sections we identified the contours of integration for all tree amplitudes

and all one-loop leading singularities. These results immediately apply to an infinite class

of leading singularities — those that can be constructed by attaching ‘boxes’ together at

their corners. This follows because we can recursively interpret each of the 4 sub-matrices

of LN,K as one-loop leading singularities themselves. Thus the general statement is that

this type of leading singularity at L loops corresponds to a configuration where LN,K is

broken up into 3L + 1 submatrices following the pattern of equation (3.8). This structure

of leading singularity can be visualized as in figure 3 where the black dots represent the

joined corners and the little tick marks at the other corners represent external particles.

These sorts of leading singularities always correspond to block diagonal C matrices

(note that the fact that the blocks lie on the diagonal is itself meaningless because we are

free to cyclicly translate all of the columns). This makes sense based on the topological

structure of the loop diagram, because beginning at any point on the diagram one can

follow propagators and “walk” from tree amplitude to tree amplitude, encountering every

propagator and tree amplitude in cyclic order. For more general topologies this would not

be possible — one would inevitably miss some tree amplitudes and propagators.

We can write more general leading singularities in twistor space using the method of

section 2. As a first example we can consider the diagram of figure 4. Computing this

diagram in twistor space is straightforward, since again we only need to integrate over

delta functions. We will not go through the computation in detail or consider the possible

subtleties that can arise when the various tree amplitudes at the corners have too few delta

functions (i.e. for very small ni and ki). We will only give the generic result because our goal

is to explicate the pattern of how leading singularities correspond to various sub-structures

in the k, n Grassmannian.

The easiest way to compute this leading singularity is to first take account of the

propagators around the borders of the box and pentagon and only then integrate over
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Figure 4. This diagram shows a 2-loop leading singularity and the corresponding points in the

Grassmannian to which it corresponds. The rectangles in the pictured matrix correspond to its

non-zero entries, and the adjacent boxes share a single row.

the single W variable corresponding to the propagator shared between the box and the

pentagon. The first step gives a structure in LN,K that is block diagonal as in the one-loop

case except with 7 blocks instead of 4. The second step eliminates a row and column,

with the result that two non-adjacent blocks now share a row. This can be pictured as

in figure 4, where we have explicitly displayed the C matrix structure that arises when

this leading singularity is embedded in LN,K (the regions outside the boxes are filled with

zeroes). This analysis can be generalized to another infinite class of leading singularities

made up of boxes and pentagons that are chained together along various sides in such a

way that there are 4L propagators at L loops.

Although we have given the general case above, we have also explicitly checked our

results for the case n = 12, k = 6, ie for an N4MHV amplitude. In that case the full C

matrix for the 2-loop leading singularity

takes the form

C =



















c1,1 1 0 0 0 0 0 0 0 0 c1,11 c1,12

a b c2,3 c2,4 c2,5 0 0 0 0 0 0 0

0 0 0 c3,4 c3,5 c3,6 1 0 0 0 0 0

0 0 0 0 0 c4,6 c4,7 c4,8 1 0 0 0

a b 1 0 0 0 0 c5,8 c5,9 c5,10 0 0

a b 1 0 0 0 0 0 0 c6,10 c6,11 c6,12



















(3.30)
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Figure 5. An example of a 4-loop leading singularity and the associated subset of the Grass-

mannian. The two blue rows are identical, while the two red rows are identical up to an overall

factor each.

This two-loop leading singularity has a very complicated kinematic structure in momentum

space. By this we mean that when one solves the 8 quadratic equations that force the 8 in-

termediate propagators on-shell, the solution involves elaborate double square roots of kine-

matic invariants. When L12,6 is transformed to momentum space one obtains the equations

Cαaλ̃a = 0 and λa − Cαaρα = 0 (3.31)

for the ciJ and a and b variables, where ρα are auxiliary spinors that must be solved for and

eliminated. We have checked explicitly4 that with our C matrix structure these equations

give precisely the kinematic structure of the leading singularity. This is an extremely

non-trivial check of our methods and of the claim that the residues of Ln,k are in fact

leading singularities.

More interesting cases arise at 3-loops and beyond where we have the possibility of tree

amplitudes that are entirely internal to the loop diagram. An example of this phenomenon

is given in figure 5. Here again we have computed the kinematics of the object in twistor

space by first accounting for the propagators along the boundary and then integrating over

the W variables that link the Li along the boundary with the internal tree amplitudes. In

the C matrix structure pictured in figure 5, the two blue rows are identical, while the red

rows are identical up to an overall factor each. We see again that the topology of the loop

graph is reflected in the structure of the subspace of the Grassmannian.

There are many possibilities for further exploration here, and it may even be possible

to categorize and understand all of the possible topologies. Other natural goals include

understanding in a more concrete way how the twistor space structure gives rise to the

appropriate momentum space kinematics, and understanding whether all residues of Ln,k

are leading singularities at all loops. It is exciting to note that for any leading singularity

our methods will give some sub-matrix structure within LN,K . Thus with one class of

4with the help of Jacob Bourjaily
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exceptions, we have implicitly shown that all leading singularities arise from Grassman-

nian kinematics.

The exceptions are the so-called “composite leading singularities” [2], which seem to

be important in obtaining the full loop amplitudes. These are diagrams at L loops with

fewer than 4L explicit propagators which nevertheless give rise to leading singularities.

The classic example is the diagram

where we have shown the series of cuts and manipulations that one can perform in order

to obtain the leading singularity. The naive translation of this diagram into twistor space

would seem not to give rise to a leading singularity, but to a product of tree amplitudes

integrated over one free variable. Clarifying the role that these sorts of leading singularities

play in constructing general loop amplitudes is an important goal for future work.

4 Conclusions and future diretions

We have shown how any given leading singularity of the N = 4 SYM S-Matrix can be

identified among the residues of the Grassmannian contour integral Ln,k. Moreover, we

have seen that there is a simple and physical pattern for how the various leading singularities

appear, so that the structure of the perturbation series is reflected in various subspaces

within the Grassmannian. Let us now consider some directions for future work.

• Evaluating the residues. The only piece missing from our argument is a method for

calculating the residues themselves in general — if this could be established, then our

argument would become a proof that all leading singularities are residues of Ln,k. Not

only is this a precise mathematical problem, but we know the answer ahead of time

— for instance, at one-loop we know that there must be a residue of LN,K containing

four smaller Li
ni,ki

, and we know that the actual value of the residue is given by

the products of the denominator factors from the four smaller Li
ni,ki

. However, this

question remains both non-trivial and interesting, as the determinant factors that

make up the denominator of Ln,k make up the ‘Grassmannian Dynamics’. Also, the

computation of multi-variable composite residues is in general a difficult mathemat-

ical problem [57]–[59], so we expect that the special form of the denominator must

play a crucial role. It will also be interesting to understand the converse statement,

that all residues are in fact leading singularities, and perhaps to reverse our logic and

formulate a recursive ‘derivation’ of Ln,k.

• Composite leading singularities. As discussed in section 3.5, we do not have a twistor

space picture for the composite leading singularites, which arise from diagrams at
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L loops that have fewer than 4L explicit propagators. These diagrams seem to

play a role in the construction of the full S-Matrix [2], so it may be important to

identify them. Another possibility is that they are somehow always associated with,

or algebraically identical to, the more natural leading singularities that we have

already identified. This is a pressing issue if we hope to unite Ln,k with the actual

loop integrals to construct the full S-Matrix of the N = 4 theory.5

• Kinematic structures. In our two loop 12-pt N4MHV example we saw how a particu-

lar subspace within the Grassmannian automatically encoded the solutions to the 8

quadratic equations that arise when we ‘cut’ 8 loop propagators and force them on-

shell — a rather non-trivial feat. It would be interesting to systematically understand

how very complicated momentum space kinematics can be encoded by Grassmannian

subspaces. This may be of particular interest because the ‘Grassmannian Kinemat-

ics’ may generalize beyond the N = 4 theory even if the ‘Grassmannian Dynamics’

(the denominator structure and specific residues) does not.

• Residue theorems. Now that it is possible to identify leading singularities within Ln,k

for very general n and k it will be interesting to try to study the appropriate residue

theorems [57]–[59] in a systematic way. As we saw in [1], we expect that these residue

theorems encode the locality of the S-Matrix by enforcing that scattering amplitudes

only have physical poles and obey the IR equations. It would be interesting to

understand these facts in greater generality and at higher loops.

• Yangian symmetry. Although the dual conformal invariance [34]–[47] of Ln,k has

been shown in [32, 33], an additional miracle occurred, namely that Ln,k was found

to be proportional to Ln,k−2 written in a “momentum twistor space” [53]. In order to

better understand this miracle, and also because the Yangian generators [43] become

extremely natural in twistor space, it would be interesting to directly understand the

Yangian symmetry of Ln,k. This is not so easy because it is only the residues of Ln,k

that are Yangian invariant; the integrand itself certainly is not.

Many of the ideas in this paper were inspired by the ‘Hodges diagrams’ of [13]–[16];

we have made minimal use of them mostly because they would be unfamiliar to most

readers. Previously, Hodges diagrams have only been used to represent tree ampli-

tudes, but our method of writing leading singularities in twistor space shows that

one could equally well use Hodges diagrams to represent loop-level information (in

fact Hodges diagrams can enumerate all leading singularities). It has been shown [60]

that the Yangian symmetry of scattering amplitudes in the N = 4 theory can be seen

via a simple induction argument applied to Hodges diagrams. It would be interesting

to try to extend this argument to all leading singularities.

• Non-supersymmetric theories. At one-loop, scattering amplitudes in theories such as

pure Yang-Mills cannot be characterized by their leading singularities, but require

5Unless of course there is some direct, once-and-for-all solution to this problem, as the existence of the

Wilson Loop/Amplitude correspondence and dual conformal invariance [34]–[47] might be taken to suggest.
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the specification of so-called triangle and bubble coefficients and also rational terms

that have no 4-dimensional unitarity cuts.

The Hodges diagram techniques of [13]–[16] are equally applicable to tree amplitudes

in Yang-Mills theories without supersymmetry. Using the methods of section 2, it

should be possible to write triple and double cuts in twistor space, and perhaps

with a bit of cleverness one could isolate the actual triangle and bubble coefficients.

Experience has shown that scattering amplitudes come back from twistor space in

new and improved forms, so it might be useful to attempt to compute pure Yang-Mills

amplitudes in this way.

• Building full amplitudes. It seems reasonable to interpret the very existence of Ln,k

as an indication of the importance of leading singularities, so it is very important to

understand if there is some simple way of computing the actual S-Matrix from its

leading singularities beyond one-loop.

Another very exciting direction would involve combining the Wilson Loop, which

has been conjectured to compute MHV amplitudes to all orders [36]–[39], and Ln,k,

which in the form of [32] actually builds non-MHV amplitudes from MHV amplitudes

using Momentum (or dual conformal) Twistors [53]. More generally, techniques from

integrability [62, 63] may shed light on Ln,k.

• Implications for gravity? A holy grail and initial motivation for much recent work

has been the hope of finding something like Ln,k for N = 8 Supergravity [64]–[66], a

theory whose perturbative S-Matrix may also be determined by its leading singular-

ities [3], and may be finite [67]–[87]. If found, such an object could be viewed as a

holographic description of flat spacetime.

The pattern of leading singularities within Ln,k gives us hints for how something like

Ln,k might work for N = 8 Supergravity. Leading singularities seem to be equally

important in N = 8 as in N = 4 [3], so if a direct analogue of Ln,k exists for gravity,

we might expect it to have the same sort of topological and recursive structure as

we have found for the N = 4 theory, except without color ordering. It may make

sense to ask questions along the lines of “does there exist a manifold containing the

gluing of four gravitational tree amplitudes in all possible permutations?”. Also, we

know from its non-conformal nature, from the fact that the gravitational ‘charge’

is energy-momentum, and from explicit checks that leading singularities in N = 8

cannot be characterized with as few kinematical variables as those of N = 4, and

this again points to a some new and different space for a dual description of gravity.

Note added. During preparation of a companion paper to this work, an interesting new

paper [88] appeared which has some overlap with this work.
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A The residues of LN,K

A.1 Jacobians

Recall that

Ln;k(Wa) =

∫

dk×nCαa

(12 · · · k) (23 · · · (k + 1) ) · · · (n1 · · · (k − 1) )

k
∏

α=1

δ4|4(CαaWa) (A.1)

is invariant under GL(k) transformations that take Cαa → L β
α Cβa. This is a redundancy

of description, analogous to the gauge symmetries necessary to provide local descriptions

of massless spin 1 and spin 2 particles (in our case the redundancy makes the cyclic permu-

tation symmetry manifest). This redundancy must be eliminated before we can compute

leading singularities.

We have introduced a new gauge fixing for this GL(k) redundancy, so in this section

we will compute the relevant Jacobian. Perhaps the most difficult issue is coming up with

a clear notation for these large matrices, so we will refer throughout to an example in the

hopes that the general case is clear.

With the ‘canonical’ gauge fixing of [1], where the C matrix is fixed so that some k

of its columns form the k × k identity matrix, the Jacobian is 1. Since our gauge fixing is

very similar to this one, it will be easiest to compute our Jacobian by transforming from

this gauge fixing to our own.

As a rather general example to keep in mind, a C matrix with the ‘old’ gauge fixing

would be

Cold =



















∗ ∗ 1 0 x 0 x x 0 0 ∗ 0

∗ ∗ 0 1 x 0 x x 0 0 x 0

∗ ∗ 0 0 ∗ 1 x x 0 0 x 0

x x 0 0 ∗ 0 ∗ ∗ 1 0 x 0

x x 0 0 x 0 ∗ ∗ 0 1 x 0

x x 0 0 x 0 ∗ ∗ 0 0 ∗ 1



















(A.2)

whereas with our gauge fixing we will take

Cnew =



















c11 c12 1 0 x15 0 x17 0 0 0 c1,11 c1,12

c21 c22 c23 1 x25 0 x27 x28 0 0 0 0

c31 c32 c33 0 c35 1 x37 x38 0 0 0 0

x41 0 0 0 c45 c46 c47 c48 1 0 x4,11 0

x51 x52 0 0 0 0 c57 c58 c59 1 x5,11 0

x61 x62 0 0 0 0 c67 c68 c69 0 c6,11 1



















(A.3)
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It is easy to find the GL(k) transformation that relates these two matrices. We simply take

Cnew
αa = J (Cnew) β

α Cold
βa with J (Cnew) =



















1 0 0 0 0 c1,11

c23 1 0 0 0 0

c33 0 1 0 0 0

0 0 c46 1 0 0

0 0 0 c59 1 0

0 0 0 c69 0 1



















(A.4)

We have emphasized that J is a function of the Cnew variables, so that J−1 · Cnew also

depends entirely on these variables. Now we can compute the Jacobian from the equation

J−1 · Cnew = Cold. Taking d of both sides and then multiplying by J gives

dCnew
αa + (J · dJ−1) β

α · Cnew
βa = J β

α · dCold
βa (A.5)

Since Ln,k is invariant under global GL(k) transformations, this last multiplication with J

drops out of the overall Jacobian, which we can now compute directly from the left hand

side of the equation above. It is amusing that this equation makes it manifest that J is

a GL(k) “gauge field”. Also note that this equation is completely general, and does not

depend on any of the details of our particular illustrative example.

Now the measure comes from taking the wedge product

∧

α,a

[

dCnew
αa + (J · dJ−1) β

α · Cnew
βa

]

(A.6)

and the variables that do not appear in J can be factored out. This means that the only

columns (values of a) that produce a non-trivial Jacobian are those where there are extra

0s in Cnew. Thus the Jacobian is

K
∏

i=1

(

J ·
∂J−1

∂ci

)β

αi

Cnew
βai

(A.7)

where i labels the K entries in Cnew that have been set to zero by our gauge fixing, and ai

and αi are the corresponding columns and rows. This formula simply reduces to a product

of minors to various powers; in the case of our example the Jacobian is

(c32 − c12c33)(c45 − c35c46)
2(c68 − c48c69)(c1,11 − c6,11c1,12)

2 (A.8)

In general, with our specific gauge fixing, the Jacobian is given by a product of four

(ki−1)×(ki−1) minor determinants, each raised to the power ki+1−1. These are the right-

most minors in each of the (ni−2)×(ki−1) sub-blocks corresponding to the four corners of

the one-loop leading singularity (box), as can be verified by a straightforward computation.

A.2 Existence of tree and one-loop residues

In this appendix we will argue for the existence of the residues of LN,K that give rise to

the block structure of the C matrix corresponding to the four Li. We will refer to the
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Grassmannian coordinates that we wish to set to zero as x variables, as pictured in the

C matrix of equation (A.3). We will show that the denominator of LN,K vanishes to high

enough order in the x variables for the point x = 0 to be a residue.

To begin let us count the number of x variables, noting for convenience that N + 8 =
∑

i ni and K + 4 =
∑

i ki. There are NK −
∑

ki(ni − 2) entries in C outside of the sub-

matrices corresponding to the Li, but K +
∑

(ki − 1)(K − ki) are set to zero once we fix

the GL(K) redundancy, so there are

Nx = (N − K)K + 4 −
4
∑

i=1

[ki(ni − ki)] (A.9)

x variables in total. Now we need to show that

D = (12 . . . K)(23 . . . K + 1) . . . (N12 . . . K − 1) (A.10)

has no terms of lower order lower than this in the x variables. Another way of saying this is

that we want to prove that the denominator, considered as a polynomial in the x variables,

is to leading order homogeneous and of degree Nx.

It suffices to examine how the rank of the K × K matrices appearing in D depends

on the x variables. Specifically, we would like to consider how the sum of the ranks of

these N matrices changes when x take generic values versus when all x = 0, since this

tells us the order of D as a polynomial in the x. For each i = 1, 2, 3, 4 there are ki − 2

rows full of xs (or zeroes) that are each of length N + 2 − ni and also four rows of length

N + 4−ni − ni+1. The presence of each row increases the order of D in the x variables by

the length of the row minus K − 1. However, there is an additional effect near the corners

of the Li sub-matrices because a linear dependence in either the rows or the columns of a

matrix will decrease its rank. This contributes (ki − 1)(ki − 2)/2 at two corners of each of

the four sub-matrices, giving a total

(N − K + 3)K + 8 +

4
∑

i=1

[(ki − 1)(ki − 2) − kini] (A.11)

This is precisely equal to the number of x variables Nx that we counted above. Without

a better understanding of the precise definition of the residue we cannot conclude that it

exists, but our argument makes it very plausible.

B All NMHV residues

Now we will give a solution for all the residues of Ln,3. By a solution we mean an explicit

identification of every residue of the contour integral

Ln;3(Wa) =

∫

d3nCαa

(123) · · · (i − 1, i, i + 1) · · · (n12)

3
∏

α=1

δ4|4(CαaWa) (B.1)

This is a multi-dimensional contour integral over a G(3, n) Grassmannian; it is useful to

count the number of integration variables in order to see the best way to label the residues.
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After eliminating the GL(3) redundancy of the Grassmannian, Ln,3 becomes an integral

over 3n − 9 variables. When we Fourier transform from twistor space back to momentum

space, we produce 2n delta functions, but 4 of these turn into the momentum conservation

delta function, so there are only 2n−4 independent constraints. After these constraints have

been taken into account Ln,3 reduces to a contour integral over (3n−9)−(2n−4) = n−5 free

variables. The denominator of the integrand is simply a product of n 3 × 3 determinants,

and on the delta function constraints these are each linear functions of the n − 5 free

variables. Thus a single residue can be specified by listing the 5 determinants that are not

set to zero at the residue of the contour of integration.

It is easiest to think of the solution as being given by this diagram

Those familiar with [16] may note that this is a ‘Hodges diagram’, but knowledge of these

diagrams is not essential to understand what follows. The particles are labelled by an

integer from 1 to n, and A,B,C,D,E can be any increasing set of integers in this range.

We are representing these particles at the vertices of the pentagon with Z = (λ̃, µ̃, η̃)

twistors, while all of the other particles, which are not explicitly drawn, are most naturally

taken to be W = (λ, µ, η) twistors. This is simply a choice of basis and is not physically

meaningful, but it will be useful in what follows. What the diagram means is that we take

the anti-MHV 5-pt amplitude M5(ZA,ZB ,ZC ,ZD,ZE) and up to five MHV amplitudes

such as M(ZA,WA+1, . . . ,ZB) and simply multiply them. The number of particles in each

MHV amplitude is fixed by differences such as B −A; if B = A + 1 then there is no MHV

amplitude on the AB side of the pentagon.

What does the diagram mean physically? It turns out that this is the most general

object that one can get from applying the BCFW recursion relations to compute NMHV

tree amplitudes. Our claim is that this diagram is precisely the residue that we would label
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{A,B,C,D,E}, where eg A represents the determinant (A−1, A,A+1). Let us now show

this explicitly.

First we will write Ln,3 in a basis where particles A,B,C,D,E are represented by Z

and the others are represented by W in order to facilitate comparison with the diagram.

We fix the GL(3) redundancy of Ln,3 by setting columns A, B, and C to the identity

matrix. Next we Fourier transform these particles to the Z basis, giving

Ln;3 =

∫

d3n−9ciJ

(123) · · · (i − 1, i, i + 1) · · · (n12)
eiciJWi·ZJ (B.2)

where J = A,B,C. Now we can Fourier transform particles D and E to the Z basis as

well, giving

Ln;3 =

∫

d3n−9ciJ

(123) · · · (i − 1, i, i + 1) · · · (n12)
eiciJWi·ZJ δ4|4(ZD + cDJZJ)δ4|4(ZE + cEJZJ)

(B.3)

The residue of interest is obtained by setting (I−1, I, I+1) = 0 for all I 6= A,B,C,D,E. We

will now see that the diagram can be written as an integral over the same ciJ variables with

the same structure of delta functions as Ln,3. The vanishing of the claimed determinants

will be guaranteed by the structure of the diagram.

The central pentagon of the diagram is simply an anti-MHV 5-pt amplitude. In accord

with our choice of variables for Ln,3 let us represent it in the all Z basis with its Cαa matrix

fixed to be

Cp =

(

cp
DA cp

DB cp
DC 1 0

cp
EA cp

EB cp
EC 0 1

)

(B.4)

where the p index indicates that these are the c’s in the pentagon. Now we can write the

pentagon as

∫

d6cp

(AB)(BC) . . . (EA)
δ4|4(ZD + cp

DJZJ)δ4|4(ZE + cp
EJZJ) (B.5)

and the delta functions match up with our representation of Ln;3.

Our diagram represents the product of this pentagon with the five MHV amplitudes

that are attached to its edges. We can write each of these amplitudes as a copy of Lm;2.

For example, the MHV amplitude attached to A and B can be written with a CAB matrix

CAB =

(

1 cA+1,A cA+2,A . . . cB−1,A 0

0 cA+1,B cA+2,B . . . cB−1,B 1

)

(B.6)

so that the MHV amplitude itself takes the form

MDE =

∫

dCAB

(A,A + 1) . . . (B − 1, B)(B,A)
eicAB

iJ
Wi·ZJ (B.7)

where J = A,B and i runs from A + 1 to B − 1. Similar expressions obtain for

MBC ,MCD,MDE , and MEA.
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Now we can see that with our choice of “gauge fixing” of the various GL(2) and

GL(3) Grassmannian redundancies of description, (I − 1, I, I + 1) = 0 for A < I < B

but that (B − 1, B,B + 1) does not vanish. The former statement follows from the fact

that cI,C does not exist, so in other words cI,C = 0 by definition. Since the determinant

factors are linear in cI,C , they vanish. The latter statement follows by direct evaluation

— (B − 1, B,B + 1) = cB−1,AcB+1,C which can be seen to be non-vanishing in momentum

space by a direct computation.

Both the diagram and Ln,3 are independent of the choice of Z or W basis and the

“gauge fixing” of the various GL(2) and GL(3) redundancies. With different gauge fixings

it would be clear that the determinant (I − 1, I, I + 1) = 0 for all I 6= A,B,C,D,E. Since

we have made no assumptions that break the symmetry between A,B,C,D,E except for

the choice of basis and “gauge”, we can conclude that the diagram corresponds to the

claimed residue of Ln,3.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution Noncommercial License which permits any noncommercial use, distribution,
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