104 research outputs found

    Method Of Forming Supported Doped Palladium Containing Oxidation Catalysts

    Get PDF
    A method of forming a supported oxidation catalyst includes providing a support comprising a metal oxide or a metal salt, and depositing first palladium compound particles and sec­ ond precious metal group (PMG) metal particles on the sup­ port while in a liquid phase including at least one solvent to form mixed metal comprising particles on the support. The PMG metal is not palladium. The mixed metal particles on the support are separated from the liquid phase to provide the supported oxidation catalyst

    Doped palladium containing oxidation catalysts

    Get PDF
    Palladium-containing catalysts that exhibit fast kinetics in oxidation of reducing gases such as hydrogen, carbon monoxide, and hydrocarbons have been prepared. Palladium, as oxide and/or hydroxide, is deposited on various metal oxides and metal sulfates. The kinetics of palladium oxide reduction has been increased by the addition of precious metal group such as platinum, silver, and ruthenium salts and complexes. This invention can be used in development of chemochromic passive sensors for hydrogen, carbon monoxide, and hydrocarbon gas detection. These gases/liquids are widely used and produced in many industries and a safe operation is a number one priority for all of them. These pigments will provide a layer of protection against accidental releases of these gases and therefore reinforces a safe manufacturing/utilization environment. When used as chemochromic hydrogen leak detection sensor, this novel doping technique has increased the pigments sensitivity toward hydrogen gas by 3 folds while encapsulated within a silicon resin

    Catalytic dehydrogenation of amine borane complexes

    Get PDF
    A method of generating hydrogen includes the steps of providing an amine borane (AB) complex, at least one hydrogen generation catalyst, and a solvent, and mixing these components. Hydrogen is generated. The hydrogen produced is high purity hydrogen suitable for PEM fuel cells. A hydrolytic in-situ hydrogen generator includes a first compartment that contains an amine borane (AB) complex, a second container including at least one hydrogen generation catalyst, wherein the first or second compartment includes water or other hydroxyl group containing solvent. A connecting network permits mixing contents in the first compartment with contents in the second compartment, wherein high purity hydrogen is generated upon mixing. At least one flow controller is provided for controlling a flow rate of the catalyst or AB complex

    Statistical-thermodynamics modelling of the built environment in relation to urban ecology

    Get PDF
    Various aspects of the built environment have important effects on ecology. Providing suitable metrics for the built forms so as to quantify and model their internal relations and external ecological footprints, however, remains a challenge. Here we provide such metrics focusing on the spatial distribution of 11,418 buildings within the city of Geneva, Switzerland. The size distributions of areas, perimeters, and volumes of the buildings follow approximately power laws, whereas the heights of the buildings follow a bimodal (two-peak) distributions. Using the Gibbs-Shannon entropy formula, we calculated area, perimeter, volume, and height entropies for 16 neighbourhoods (zones) in Geneva and show that they have positive correlations (R2 = 0.43-0.84) with the average values of these parameters. Furthermore, the entropies of area, perimeter, and volume themselves are all positively correlated (R2 = 0.87-0.91). Deriving entropy from Helmholtz free energy, we interpret entropy as a measure of spreading or expansion and provide an analogy between the entropy increase during the expansion of a solid and the entropy increase with the expansion of the built-up area in Geneva. Compactness of cities is widely thought to affect their ecology. Here we use the density of buildings and transport infrastructure as a measure of compactness. The results show negative correlation (R2 = 0.39-0.54) between building density and the entropies of building area, perimeter, and volume. The calculated length-size distributions of the street network shows a negative correlations (R2 = 0.70-0.76) with the number of streets per unit area as well as with the total street length per unit area. The number of buildings as well as populations (number of people) show sub-linear relations with both the annual heat demand (MJ) and CO2 emissions (kg) for the 16 neighbourhoods. These relations imply that the heat demand and CO2 emissions grow at a slower rate than either the number of buildings or the population. More specifically, the relations can be interpreted so that 1% increase in the number of buildings or the population is associated with some 0.8-0.9% increase in heat demand and CO2 emissions. Thus, in terms of number of buildings and populations, large neighborhoods have proportionally less ecological footprints than smaller neighborhoods

    Catalytic dehydrogenation of amine borane complexes

    Get PDF
    A method of generating hydrogen includes the steps of providing an amine borane (AB) complex, at least one hydrogen generation catalyst, and a solvent, and mixing these components Hydrogen is generated. The hydrogen produced is high purity hydrogen suitable for PEM fuel cells. A hydrolytic in-situ hydrogen generator includes a first compartment that contains an amine borane (AB) complex, a second container including at least one hydrogen generation catalyst, wherein the first or second compartment includes water or other hydroxyl group containing solvent. A connecting network permits mixing contents in the first compartment with contents in the second compartment, wherein high purity hydrogen is generated upon mixing. At least one flow controller is provided for controlling a flow rate of the catalyst or AB complex

    Quantifying the Differences in Geometry and Size Distributions of Buildings Within Cities

    Get PDF
    There have been many studies on the spatial configuration of cities, but few attempts to quantify the difference in building patterns between the old and new parts of cities. This may be partly attributable to lack of suitable study methods. This paper presents a new application of statistical methods for quantifying the geometric difference between different parts of a city using, as a case study, the old (historical) and new parts of the city of Yazd in Iran. We measured 341 edge lengths of 4 bazaars, 302 edge lengths of 5 mosques and tombs, and 239 edge lengths of 3 schools. We also measured 6,804 edge lengths and the areas of 1,243 well-preserved courtyard houses in the old part and 4,948 edge lengths and the areas of 1,237 houses in the new part of the city. In the old part, all edge-length and house-area frequency distributions, to a first approximation, follow power laws, indicating that there are many small and very few large buildings. By contrast, in the new part the edge-length and house-area frequency distributions follow bimodal (two-peak) distributions. The calculated entropies (measures of dispersion) of the house edge lengths and areas in the old part are much higher than of those in the new part and provide a clear, quantitative measure of the geometric differences between the built-up structures of old and the new parts of the cities. The power-law distributions in the old part indicate a gradual and continuous variation in sizes of edge lengths and house areas, whereas the bimodal distributions in the new part indicate abrupt (discontinuous) changes in the edge lengths and house areas. The entropy results imply that the size distributions of houses in the old part are more dispersed than those in the new part, indicating more interconnected structures in the old part of the city. The results also demonstrate quantitatively that there is a lack of coherence between the structures of old and new parts of city

    Gas Permeable Chemochromic Compositions for Hydrogen Sensing.

    Get PDF
    A (H.sub.2) sensor composition includes a gas permeable matrix material intermixed and encapsulating at least one chemochromic pigment. The chemochromic pigment produces a detectable change in color of the overall sensor composition in the presence of H.sub.2 gas. The matrix material provides high H.sub.2 permeability, which permits fast permeation of H.sub.2 gas. In one embodiment, the chemochromic pigment comprises PdO/TiO.sub.2. The sensor can be embodied as a two layer structure with the gas permeable matrix material intermixed with the chemochromic pigment in one layer and a second layer which provides a support or overcoat layer

    Tissue Necrosis due to Chloroform: A Case Report

    Get PDF
    For many years, gutta-percha has been the root canal filling material of choice. Chloroform is one of the most efficient solvents widely used for gutta-percha removal in retreatment cases, despite being toxic and carcinogenic. The present case report discusses a chloroform extrusion through an existing perforation to the surrounding periodontal ligament space and subsequent necrosis in supporting bone and tissues, during an endodontic retreatment visit for an addicted patient. Subsequently, the management and preventive options are reviewed

    Gas Permeable Chemochromic Compositions for Hydrogen Sensing

    Get PDF
    A (H2) sensor composition includes a gas permeable matrix material intermixed and encapsulating at least one chemochromic pigment. The chemochromic pigment produces a detectable change in color of the overall sensor composition in the presence of H2 gas. The matrix material provides high H2 permeability, which permits fast permeation of H2 gas. In one embodiment, the chemochromic pigment comprises PdO/TiO2. The sensor can be embodied as a two layer structure with the gas permeable matrix material intermixed with the chemochromic pigment in one layer and a second layer which provides a support or overcoat layer

    Lead Research and Development Activity for DOE's High Temperature, Low Relative Humidity Membrane Program (Topic 2)

    Get PDF
    The Department of Energy’s High Temperature, Low Relative Humidity Membrane Program was begun in 2006 with the Florida Solar Energy Center (FSEC) as the lead organization. During the first three years of the program, FSEC was tasked with developing non-Nafion® proton exchange membranes with improved conductivity for fuel cells. Additionally, FSEC was responsible for developing protocols for the measurement of in-plane conductivity, providing conductivity measurements for the other funded teams, developing a method for through-plane conductivity and organizing and holding semiannual meetings of the High Temperature Membrane Working Group (HTMWG). The FSEC membrane research focused on the development of supported poly[perfluorosulfonic acid] (PFSA) – Teflon membranes and a hydrocarbon membrane, sulfonated poly(ether ether ketone). The fourth generation of the PFSA membrane (designated FSEC-4) came close to, but did not meet, the Go/No-Go milestone of 0.1 S/cm at 50% relative humidity at 120 °C. In-plane conductivity of membranes provided by the funded teams was measured and reported to the teams and DOE. Late in the third year of the program, DOE used this data and other factors to decide upon the teams to continue in the program. The teams that continued provided promising membranes to FSEC for development of membrane electrode assemblies (MEAs) that could be tested in an operating fuel cell. FSEC worked closely with each team to provide customized support. A logic flow chart was developed and discussed before MEA fabrication or any testing began. Of the five teams supported, by the end of the project, membranes from two of the teams were easily manufactured into MEAs and successfully characterized for performance. One of these teams exceeded performance targets, while the other requires further optimization. An additional team developed a membrane that shows great promise for significantly reducing membrane costs and increasing membrane lifetime
    • …
    corecore