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Abstract 

Various aspects of the built environment have important effects on ecology. Providing 

suitable metrics for the built forms so as to quantify and model their internal relations and 

external ecological footprints, however, remains a challenge. Here we provide such metrics 

focusing on the spatial distribution of 11,418 buildings within the city of Geneva, 

Switzerland. The size distributions of areas, perimeters, and volumes of the buildings follow 

approximately power laws, whereas the heights of the buildings follow a bimodal (two-peak) 

distributions. Using the Gibbs-Shannon entropy formula, we calculated area, perimeter, 

volume, and height entropies for 16 neighbourhoods (zones) in Geneva and show that they 

have positive correlations (R
2
 = 0.43-0.84) with the average values of these parameters. 

Furthermore, the entropies of area, perimeter, and volume themselves are all positively 

correlated (R
2
 = 0.87-0.91). Deriving entropy from Helmholtz free energy, we interpret 

entropy as a measure of spreading or expansion and provide an analogy between the entropy 

increase during the expansion of a solid and the entropy increase with the expansion of the 

built-up area in Geneva. Compactness of cities is widely thought to affect their ecology. Here 

we use the density of buildings and transport infrastructure as a measure of compactness. The 

results show negative correlation (R
2
 = 0.39-0.54) between building density and the entropies 

of building area, perimeter, and volume. The calculated length-size distributions of the street 

network shows a negative correlations (R
2
 = 0.70-0.76) with the number of streets per unit 

area as well as with the total street length per unit area. The number of buildings as well as 

populations (number of people) show sub-linear relations with both the annual heat demand 

(MJ) and CO2 emissions (kg) for the 16 neighbourhoods. These relations imply that the heat 

demand and CO2 emissions grow at a slower rate than either the number of buildings or the 

population. More specifically, the relations can be interpreted so that 1% increase in the 

number of buildings or the population is associated with some 0.8-0.9% increase in heat 

demand and CO2 emissions. Thus, in terms of number of buildings and populations, large 

neighborhoods have proportionally less ecological footprints than smaller neighborhoods.  
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1. Introduction 

Cities can be regarded as thermodynamic systems. They are sources of water vapour, trace 

gases and aerosol, and modify the surface roughness (thereby affecting the magnitude and 

direction of wind) and the moisture content of the soil (e.g., Costanza et al., 1997; Wallace 

and Hobbs, 2006). In addition, urban areas impact on land use, biogeochemical cycles, and 

hydrosystems (Grimm et al., 2008). Perhaps the best-known climatic effect of cities is the 

urban ‘heat island’, whereby dense cities have higher temperatures, particularly minimum 

temperatures, than the surrounding rural areas (Grimm et al., 2008). The heat islands impact 

on air quality and water resources. These and many other aspects of cities influence local and 

global climate and contribute to pollution (Chen et al., 2014), all of which affect the general 

ecosystem. In particular, urban areas are marked by biodiversity decrease (e.g., Grimm et al., 

2008; Sanford et al., 2008; MacDougall et al., 2013). Biodiversity loss is widely thought to 

increase the vulnerability of the ecosystem (e.g., Odum and Barrett, 2004; MacDougall et al., 

2013). While the relation between reduced biodiversity and vulnerability may not be as clear-

cut as once thought (e.g., Jorgensen and Svirezhev, 2004), there is no doubt that urbanisation 

results in decreased biodiversity, and this effect is certainly of general importance.  

There exist many methods of quantification and modelling in ecology as well as in urban 

systems (e.g., Maynard-Smith, 1978; Wilson, 2006; May and McLean, 2007; Alberti, 2008; 

Zang, 2009). In particular, classical and statistical thermodynamics have been used 

extensively over many years for modelling complex systems in general (Prigogine, 1967; 

Kondepudi and Prigogine, 1998), complex urban systems (Allen and Sanglier, 1978; 

Portugali, 1997; Batty, 2005), as well as ecological systems (Svirezhev, 2000; Jørgensen and 

Fath, 2004; Jørgensen and Svirezhev, 2004; Filchakova et al., 2007; Dewar and Porte, 2008; 

Giudice et al., 2009; Jørgensen et al., 1995 and 2007). For example, exergy (i.e. the 

maximum amount of useful work that a thermodynamic system can perform) analysis can be 

used for system optimisation in many engineering fields (Sciubba and Ulgiati, 2005). Similar 

methods of quantification and modelling, particularly using both classical thermodynamics 

and statistical thermodynamics, have been developed in urban systems. Examples include 

several works using thermodynamics and emergy concepts in urban systems (e.g., Odum, 

1996; Huang, 1998; Brown et al., 2004; Huang and Chen, 2005; Bristow et al., 2013), gravity 

and maximum entropy models in transportation (Wilson, 1981; 2006; 2009; Simini et al., 

2012), as well as information entropy (Zhang et al., 2006). While both emergy and exergy 

analysis quantitatively assess the resource consumption of physical systems using space and 

time integrated energy input/output models (Brown and Herendeen, 1997; Meillaud et al, 

2004), recent comparisons suggest they are, as regards framework and approach, different 

(Sciubba and Ulgiati, 2005; Sciubba, 2010).  

Despite all these studies, there has been little attempt to quantify the spatial distributions of 

the built environment and urban infrastructure using methods from statistical 
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thermodynamics and information theory (Gudmundsson and Mohajeri, 2013; Mohajeri and 

Gudmundsson, 2014). In particular, there are hardly any studies on the size distributions of 

buildings within cities and between cities and how these size distributions relate to the 

ecological footprints of cities. The built-form parameters and their variation, under different 

ecological conditions, are thought to have strong impacts on the environment (Jabareen, 

2006; Tratalos et al., 2007). It is also widely thought that compact urban forms are 

ecologically more sustainable than spread or dispersed forms (Alberti, 2007). This is because 

urban form, as reflected in the size distributions of buildings and transport infrastructures, 

affects energy use and energy efficiency of the built environment and thus the local climate, 

including the generation of heat islands. It is commonly argued that compact and mixed 

urban land use is more energy efficient and produces less pollution through reducing the 

average vehicle distances travelled (Alberti, 2007; Ewing and Cervero, 2010; Makido et al., 

2012; Fragkias et al., 2013). In addition, the size distributions of buildings affect factors such 

as surface roughness, emission of greenhouse gases, and potential habitats for animals, 

particularly birds. All these factors, in turn, may affect biodiversity and vulnerability of the 

ecosystem (Alberti, 2007; Alberti 

and Marzluff, 2004.). 

 

Fig. 1. City, as a thermodynamic 

system, is separated from its 

surroundings by a boundary (thick 

broken line) that allows the 

exchange energy and/or matter with 

the surroundings. A city is therefore 

an open thermodynamic system.  

 

One difficulty in making an objective assessment of how much the built environment impacts 

on various ecological processes is that quantitative methods and general models that embrace 

both urban and ecological systems are not well developed. One aim of this study is to show 

that the Helmholtz free energy can be related to the statistical distributions as an indication of 

the useful energy and derive the general entropy formula from the Helmholtz free energy. 

The results are then applied to new data on the building configurations of the city of Geneva 

in Switzerland. The second aim is to use concepts from general statistical physics/information 

theory as a framework for quantifying the complexities of built environment in relation to 

ecology. In particular, we propose metrics for the size distributions of buildings and 

populations and their relation to urban compactness/dispersal, heat demand, and CO2 

emissions. We also discuss the general ecological implications of the results.   
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2. Statistical thermodynamics framework  

 

Here we present the basic theory of statistical mechanics and, subsequently, information 

theory as related to the quantification of complex built environment systems. Statistical 

mechanics offers a microscopic basis for thermodynamics and a probabilistic treatment of all 

forms of matter so as to explain their bulk behaviour. In turn, information theory is presently 

widely regarded as offering a deeper foundation of statistical mechanics (e.g., Brillouin, 

1956; Jaynes, 1957a,b: Ben-Naim, 2008; Volkenstein, 2009). All these three fields use the 

concept of entropy, originally measured as the input of heat at a given temperature to a 

system, and thus with the unit JK
-1

. Subsequently, when the concept was given a probabilistic 

interpretation by Boltzmann and Gibbs the original unit was maintained simply by 

multiplying the logarithm of probability by the Boltzmann constant kB. The entropy 

introduced by Shannon in relation to information theory does not have any specific physical 

unit; the unit used depends on the base of the logarithm used. There are currently many 

entropy measures - commonly with arbitrary units - but these can generally be related to the 

original thermodynamics/statistical mechanics entropy concepts and units after suitable 

manipulation.  

A thermodynamic system is that part of the universe that is of the main interest in a particular 

thermodynamic study. The surroundings of the system are, strictly speaking, the rest of the 

universe. For practical purposes, however, the system is commonly that portion of the 

universe where the thermodynamic measurements are made. An urban ecosystem is an open 

thermodynamic system since it exchanges energy and matter with its surroundings (Fig. 1). 

For an urban ecosystem, matter is primarily transported across its boundary, that is, in and out 

of the system, by human activities, whereas the system exchanges energy partly through 

natural processes (e.g., radiation) and partly thorough human activities. For a particular urban 

ecosystem such as the city of Geneva then, for practical purposes, the surrounding ecosystem 

could be the adjacent rural areas. Alternatively, the surrounding system could be the country 

(Switzerland) within which the city is located, or Europe, or the entire surface of Earth.  

The first law of thermodynamics refers to the conservation of energy and is given by:  

dWdQdU                                                                                                          (1) 

where dU is an infinitesimal change in the internal energy of the system when heat dQ  is 

added to the system and work dW is done on the system. While dU is a proper state function 

(independent of the path taken) and thus an exact (or proper) differential, dQ and dW are both 

inexact (or imperfect) differentials. Here the path dependence of heat and work is assumed 

known (cf. Sommerfeld, 1964), so no special symbols for these are used for dQ and dW. The 

second law of thermodynamics states that during any natural process the total entropy of the 

universe (or the system and its surroundings) must be greater than or equal to zero. Entropy is 

commonly interpreted as a measure of disorder in a system. While this is helpful in some 
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ways, it gives a better idea of entropy in many applications, particularly studies such as here 

for the built environment, to think of entropy in terms of spreading or dispersal.  

If a reversible process (a process that allows the system to return to its initial state) takes 

place (in a closed system) at a specific absolute temperature T, then the differential or 

infinitesimal change in entropy dS during the process is: 

T

dQ
dS

rev

                                                                                                                (2) 

where 
revdQ is the infinitesimal amount of heat received by the system. Eq. (2) is one 

definition of entropy and implies that entropy increase due to heat transfer to a system from 

its surroundings is directly proportional to the received heat and inversely proportional to the 

absolute temperature at which the heat is received. In case the process is irreversible, then Eq. 

(2) becomes the Clausius inequality: 

  0
T

dQ
                                                                                                                    (3) 

More generally, the change in entropy can be given as: 

T

dQ

T

dQ
dS

rev

                                                                                                       (4)     

for which equality applies if the process represented by the term on the right-hand side of the 

equality sign is reversible. dS is an exact differential (path independent) because dQ is 

changed into an exact differential when multiplied by T
-1

.  

For a reversible process, from Eq. (4): 

TdSdQrev                                                                                                                 (5) 

For gas of initial volume V subject to pressure p, the infinitesimal work dW in compressing 

the gas is:  

pdVdW                                                                                                                (6) 

Combining Eq. (6) with Eqs. (1) and (5) we get the fundamental equation in thermodynamics 

for a closed system, namely:  

pdVTdSdU                                                                                                        (7) 

This equation combines the first and second laws for a closed system; for an open one, a term 

allowing material exchange between the system and its surroundings must be added. All the 

quantities in Eq. (7)  are state functions, namely the internal energy U, the temperature T, the 
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entropy S, the pressure p, and the volume V, so that the equation applies also to irreversible 

processes and is valid for any process in a closed system. V and S are both extensive 

variables, that is, they depend on the size or extent of the thermodynamic system or, in other 

words, change with the quantity of material present in the system. By contrast, p and T are 

intensive variables, that is, they do not depend on the size of the system or the quantity of 

material that the system contains. S and V are also referred to as natural variables of the 

thermodynamic potential U. 

A thermodynamic potential is a measure of the energy stored in a system and how that energy 

changes, subject to given constraints, when the system evolves towards equilibrium. Thus, 

the potentials determine the direction in which a natural process in a system is likely to go. 

Apart from entropy and internal energy, the main thermodynamic potentials are Helmholtz 

free energy F, Gibbs free energy G, and enthalpy H. The focus here is on Helmholtz free 

energy. 

2.1. Helmholtz free energy 

Free energy is the energy that is free or available to do work rather than being dissipated out 

of the system as heat. Helmholtz free energy can be interpreted as the energy available to do 

useful work in a system that has constant (fixed) temperature and volume. The variables that 

are held constant (fixed), such as temperature and volume for Helmholtz free energy, are 

referred to as the natural variables of that potential. The potential allows the thermodynamic 

calculations to focus on the system, rather than the system and its surroundings, and contains 

the same information about the thermodynamic system as the fundamental equation (Eq. 7).  

The Helmholtz free energy F is defined as: 

TSUF                                                                                                                   (8) 

where U is internal energy, T is temperature, and S is entropy. Differentiating Eq. (8) we 

obtain for an infinitesimal change: 

SdTTdSdUdF                                                                                                    (9) 

Substituting Eq. (7) for dU in Eq. (9), we obtain: 

pdVSdTdF                                                                                                     (10)                         

For constant temperature then dT = 0, and: 

pdVdF                                                                                                               (11) 

Positive change in F means reversible work done on the system (by the surroundings), 

whereas negative change means reversible work done by the system on the surroundings. For 
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constant temperature (no added heat), the infinitesimal change in work is, from Eq. (6), dW = 

- pdV, so that, from Eq. (11), we have: 

dWdF                                                                                                                   (12) 

which means that a positive change in the Helmholtz free energy of a thermodynamic system 

is equal to the reversible work done on that system by the surroundings When, in addition, 

the volume is constant (fixed grip in solid mechanics), then dV = 0 and: 

0dF                                                                                                                      (13) 

Thus, F has an extreme value at constant temperature and volume. It can be shown that the 

second derivative is positive, so that the extreme value is a minimum. In a process that results 

in an absolute temperature which is equal to that of the surroundings, the maximum work that 

can be obtained is equal to the decrease in the Helmholtz free energy.  

 

2.2. The Boltzmann distribution, Helmholtz free energy, and entropy  

The frequency distribution with which individual microstates occur in a system depends on 

temperature. When there are no constraints on the system, the maximum-entropy principle 

predicts a flat or uniform frequency distribution. By contrast, when the constraints are that the 

energy and number of objects (particles/atoms in statistical mechanics) in the system are 

constant (fixed), then the distribution becomes negative exponential. If the energy associated 

with a state of a thermodynamic system is denoted by ε then the probability of occurrence of 

that state P(ε)  is given by the Boltzmann distribution law (Widom, 2002): 

Tk
BeP

/
)(





                                                                                                        (14) 

where kB is the Boltzmann constant, T is the absolute temperature, and the term: 

TkBe
/

                                                                                                                    (15) 

is the Boltzmann factor. For a macroscopic thermodynamic system in equilibrium at 

temperature T, the probability Pi of finding the system in the given (micro) state i is, from Eq. 

(15): 








i

TkE

TkE

i
Bi

Bi

e

e
P

/

/

                                                                                                     (16) 

where Ei is the total mechanical energy. The denominator in Eq. (16), representing the sum 

over all the states i, assures that the sum of all the probabilities equals one, that is: 
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 
i

iP 1                                                                                                                  (17) 

and is referred to as the partition function, normally denoted by Z and given by: 





i

TBk
iE

eZ                                                                                                             (18) 

Using Eq. (18), Eq. (16) can be written as: 

TkE
i

BieZP
/1                                                                                                      (19) 

It follows from Eqs. (19) that the probability of a particle (atom, molecule, etc) occupying a 

given energy level is directly proportional to the exponential of the negative of its energy 

divided by the product of the Boltzmann constant and the absolute temperature. The 

Boltzmann distribution thus provides information on the frequency with which the 

microstates of the thermodynamic system occur for a given temperature.  

Using the results in the Appendix (whose equations are denoted by A), from Eqs. (19) and 

(A14) it follows that Eq. (A15) can be rewritten in the following form: 


i

iiB ppkS ln                                                                                                    (20) 

where we now use lower-case p for probability so as to fit with the practice in statistical 

mechanics and information theory. Equation (20) is the Gibbs-Shannon entropy formula; it is 

completely general and applies to any probability distribution. In case the probability 

distribution is uniform, which for discrete binned distributions implies that all the bins have 

equal heights, then we obtain the Boltzmann entropy formula. More specifically, if W is the 

number of microstates (or, here, bins), so that Wpi /1 , then from Eq. (20) we get for a 

uniform distribution: 





W

i

BB Wk
WW

kS
1

ln
1

ln
1

                                                                                   (21) 

which is the Boltzmann entropy formula and applicable to systems in thermodynamic 

equilibrium. Eq. (21) shows perhaps more clearly than Eq. (20) that entropy is basically the 

logarithm of probability multiplied by the Boltzmann constant. The Gibbs-Shannon entropy 

formula (Eq. 20) is also valid for thermodynamic systems that are not in equilibrium, such as 

systems that are not with constant energy (U), volume (V), or number of particles (N). 

Furthermore, the Gibbs-Shannon entropy formula is identical in form to the entropy formula 

in information theory, thereby linking statistical mechanics and information theory.  
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2.3. Relation with information theory  

 

Shannon (1948) proposed the bit (binary digit) as the fundamental unit of information, 

whereby the information contained in a message is found by translating the message into 

binary code and counting the digits of the resulting string of zeros and ones. Messages that 

are unusual, that is, indicate something unlikely, carry more information than those that are 

considered likely before they are received because unusual messages represent unlikely 

events and are thus difficult to forecast. When the unusual messages are received, however, 

they therefore provide more information that those that are highly likely or usual. More 

specifically, when a message has probability pi, the information I obtained on receiving that 

message is given by (Luenberger, 2006, Desurvire, 2009): 

i
i

p
p

I log
1

log                                                                                                 (22) 

The logarithm (log) used here can have any base, the most common being natural, common, 

and base-2 logarithms. Different bases give different units for the calculated information. 

When the base is 10, the unit is Hartley, when the base is e, the unit is nat, and when the base 

is 2, the unit is bit. Here we use the base e and the unit is thus nat. Shannon (1948; cf. 

Shannon and Weaver, 1949) provided the following equation as a measure of information, 

which has exactly the same form as Eq. (20), namely: 

 
n

i

ii ppkH log                                                                                                (23)                                                         

where k (Shannon used capital K) is a positive constant. The value of k depends on the unit 

used. Eq. (23) implies as follows (cf.  Jones and Jones, 2000; Yanofsky and Mannucci, 2008; 

Desurviere, 2009). The quantity expressed by Eq. (23) is a measure of information, choice 

and uncertainty. The entropy H = 0 if and only if all the probabilities but one are zero, in 

which case the received message or outcome is certain. For all other cases, the entropy H is 

positive and reaches a maximum when all the probabilities pi in the probability distribution of 

Eq. (23) are equal, a uniform distribution. Then we know the least about the likely outcome 

before the message is received. Generally, the more equal the probabilities the higher the 

entropy. Maximum source entropy implies maximum uncertainty, but also maximum 

information from the received message.  

The unit of the constant k in Eq. (23) is not physical but rather depends on the base of the 

logarithm used. The constant is commonly regarded as arbitrary with a unit value, so that the 

information entropy becomes dimensionless. When the second law of thermodynamics is 

derived from pure probability considerations, the result is the natural logarithm of probability. 

To fit the results with the entropy unit J K
-1

, the log-probability results (in nat) are simply 

multiplied with kB = 1.38  10
-23

 J K
-1

. Similarly, multiplying the entropies for built 

environment data discussed here by the value of kB yields the units of physical entropy. The 
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calculated entropies of the building populations in the paper, however, are dimensionless and 

given in the unit of nat. This presentation corresponds to the Boltzmann's constant kB being 

normalised to a factor 1. The entropies have a physical connection to development of the built 

environment because the construction of buildings requires energy and produces entropy.  

3. Data and methods  

3.1. Datasets 

The sample of building configurations is restricted to a single city, Geneva in Switzerland 

(Fig. 2).  

 
Fig. 2. Location of the city of Geneva in Switzerland and the 16 studied neighborhoods/zones 

of Geneva. A 3D view, a 2D (plan or map) view of the buildings, and the rose diagrams of 

the building orientations in (a) one of the old neighbourhoods/zones of Geneva (Paquis), (b) 

one of the more recent neighbourhoods/zones (Champel).     

 

The 16 neighbourhoods or zones, however, have a large range in (1) building numbers, from 

181 to 1193, (2) geographical environment (e.g., surrounding topography and location), and 

(3) population - from about 2 thousand to 23 thousand. All the 16 zones are defined by 

administrative boundaries as determined by Swiss Federal Statistical Office, which also 

provides the population data for 2013 (www.bfs.admin.ch). Building datasets are obtained 

from the Swisstopo (www.swisstopo.admin.ch) imported into ArcGIS for subsequent 

analyses. GIS tools are used to calculate the area, perimeter, volume of the buildings and their 

azimuths (orientations). Heat demand (integrated space heating and domestic hot water) and 

CO2 emission datasets are based on measured and monitored data, but are available only for 

http://www.bfs.admin.ch/
http://www.swisstopo.admin.ch/
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buildings with at least 5 users (inhabitants). The data is provided by SITG open access data 

(Système d'information géographique du territoire genevois; http://ge.ch/energie/suivi-

energetique-des-batiments). Population data for buildings in which the heat demand and CO2 

emissions were measured (50% of the total number of buildings) are also provided by Office 

fédéral de la statistique OFS, Registre fédéral des bâtiments et des lodgements.   

3.2. Heavy – tailed distributions  

A bi-logarithmic plots yield straight lines for the heavy-tailed size distributions in Figs. (3, 4, 

5) which can be approximated by power laws.  

 

Fig. 3. Power-law size distributions of (a) building areas, xa (b) building perimeters, xp and 

(c) building volumes, xv (11419 buildings) from the whole city of Geneva using an ordinary 

scale and, then, a log-log scale (insets).(d) Bimodal height distribution, xh, of the same 

building data.  

A power law may be expressed as a frequency (probability) distribution in the form: 

 Cxxp )(                                                                                                             (24) 
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where p(x) is the frequency (probability) of buildings having area (or perimeter or volume) 

equal to x, C is a normalisation constant, and α is the scaling exponent. To obtain the bi-

logarithmic (log-log) plots (Figs. 3-5), the logarithms of both sides of Eq. (24) are taken so as 

to obtain the linear equation: 

 

 )log()log()(log xCxp                                                                                     (25) 

 

Then standard regression methods are used to find a best-fit straight line describing the 

dataset. If the straight line of Eq. (25) fits the dataset well, the distribution is commonly 

regarded as a power law (Pisarenko and Rodkin 2010). However, more accurate  tests such as 

likelihood-ratio tests (cf. Clauset et al., 2009) can be used for comparing the power-law fit 

with the one provided by other functions or alternative models (e.g., log-normal, exponential, 

and stretched exponential). 

 

Fig. 4. Power-law size distribution of (a) building areas, (b) building perimeters, and (c) 

building volumes (754 buildings) from the old zone of Geneva (Paquis) in an ordinary scale 

and, then, a log-log scale (insets).(d) Bimodal height distribution of the same data.   
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For power laws derived from histograms the scaling exponent α (Eq. 24) depends on the 

chosen bin width. To overcome (partly) this dependency on bin width, we use cumulative 

frequency distributions rather than histograms. Then we plot the probability P(x) that x has a 

value greater than or equal to x, namely: 





x

xdxpxP )()(                                                                                                   (26) 

If the frequency size distribution follows a power law,
 Cxxp )( , then: 

)1(

1
)(  


 




x

C
xdxCxP

x
                                                                      (27)                                                                     

A log-log plot of P(x) (Eq. 25) again yields a straight line, but its slope is shallower; that is, 

its scaling exponent is smaller than that of p(x) in Eq. (24). One benefit is that the cumulative 

frequency distribution tends to smooth out the irregularities (noise) in a dataset (cf. Newman 

2005; Clauset et al. 2009). 

 

Fig. 5. Power-law size distribution of (a) building areas, (b) building perimeters, and (c) 

building volumes (1055 buildings) from the more recent zone of Geneva (Champel) in an 

ordinary scale and, then, a log-log scale (insets).(d) Bimodal height distribution of the same 

data.   
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3.3. Entropy  

For a general probability distribution, such as the size-frequency distribution of buildings, the 

entropy, H or S, is given by the Gibbs-Shannon equation, Eqs. (20, 23) (Brillouin 1956; 

Laurendeau 2005; Volkenstein 2009). In Eq. (23) k is a positive constant (Boltzmann 

constant kB), n is the number of classes or bins with nonzero probabilities of buildings (bins 

containing building counts), and pi  is the probability of buildings falling in the i-th bin (the 

probability of the i-th bin). The minus sign for k ensures a positive value for the entropy. Eq. 

(23) shows a general relation between entropy H or S and probability pi; it is equally valid for 

equilibrium and non-equilibrium systems (e.g., Panagiotopolus 2012). By definition, the sum 

of the probabilities for all the bins equals one. The probabilities are a measure of the chances 

of randomly selected buildings from a population falling into a particular bin; only those bins 

that contain at least one building are included. For a uniform distribution, all the bins have the 

same frequency, whereby the entropy would reach its maximum value (Eq. 21). 

Equations (5) and (7) imply that the greater the bin number and the smaller the bin width, the 

greater is the entropy for a given data set (cf. Singh 1997; Mays et al. 2002). However, the 

number of bins cannot exceed a certain limit, for example, the number of analysed buildings. 

To minimise the effect of bin size on entropy calculations, all the bin widths used here for the 

specific parameters are equal: 100 m
2
 for area distributions, 20 m for perimeter distributions, 

1000 m
3
 for volume distributions, and 1 m for the height distributions.  

 

4. Results 

The main equations derived and discussed above can be used as quantitative metrics for the 

built environment. The following parameters were measured: areas, perimeters, volumes, and 

heights of the buildings in 16 neighbourhoods in Geneva (Tables 1 and 2). We divided the 

main analysis into three parts: the whole city (Fig. 3), a selected inner and older part (name: 

Paquis) of the city (Fig. 4), and a selected outer and more recent part (name: Champel) of the 

city (Fig. 5). The dataset on the entire city contains 11,418 buildings (Fig. 3). On plotting the 

building-area size distribution (Figs. 3 - 5), we see that the areas, perimeters, and volumes 

follow power-law size distributions, but not the building heights. All the height-size 

distributions are bimodal (double peak) distributions (Figs. 3d, 4d, and 5d). This means that 

there is one set showing a roughly normal distribution with a small mean height, and another 

set showing a roughly normal distribution about a much greater mean height.  

It is perhaps surprising that the volume-size distributions of the buildings are power laws 

given that the heights follow bimodal distributions. Clearly, the height enters the volume, so 

that we might expect the bimodal shape of the height distributions to be reflected in the shape 

of the volume distributions. However, the area size distributions all follow power laws (Figs. 

3-5). Because the areas enter the volume through two dimensions whereas the height enters 

through one dimension, it follows that the areas dominate in the volume-size distributions, 

which therefore become not bimodal but rather power law distributions. 
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4.1. Entropies of the size distributions  

We used Eqs. (20) and (23) to calculate the entropies of the various building size 

distributions. The results (Table 2) show that the entropy varies considerably between the 

selected inner and outer zones of the city of Geneva and in general within the 16 zones of the 

city (Fig. 6). Consider first the area size distribution (Figs. 3a, 4a, and 5a). Focusing first on 

the inner and outer zone in comparison with the city as a whole (Table 2), the entropy of the 

outer zone (Champel) is the largest (2.66), followed by that of the city as a whole (2.590), 

that of the inner zone (Paquis) being the smallest (2.29). Thus, the entropy of the area-size 

distribution for the whole city is in-between those of the inner and outer neighbourhoods 

(Table 2). The same results are obtained for the entropies of the other power-law size 

distributions, namely of perimeter and volume: the outer neighbourhood (Champel) has the 

largest entropies, followed by those of the city as a whole, whereas the inner neighbourhood 

(Paquis) has the smallest entropies (Table 2). 

  

Fig. 6. Average area, perimeter, volume, and height versus associated entropies. The maps 

show the distributions of area, perimeter, volume, and height entropies for 16 zones in 

Geneva. 

 

Entropy is commonly interpreted as a measure of ‘disorder’ in a system, but may also be 

regarded as a measure of spreading or dispersal. When the ‘constraints’ on a thermodynamic 

system are relaxed, such as by making more space available for its particles or objects, the 

entropy tends to increase. Here we see that the greater the arithmetic averages of the area, 
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perimeter, and volume, the greater is the corresponding entropy (Tables 1, 2). To test if such 

a correlation between entropy and average values of these parameters exists, we analysed all 

the 16 zones of the city of Geneva (Fig. 2). The results (Fig. 6a) show high linear correlations 

(the coefficient of determination, R
2
, ranging from 0.69 to 0.84) between the entropies and 

the average values of these three parameters, thereby further supporting our conclusions from 

the more limited data. There is also a correlation between average building height and 

entropy, but less significant (R
2
 = 0.43) excluding an outlier for the St-Gervais zone.  

 

Fig. 7. The relation between 

entropies of the size distributions of 

area, perimeter, and volume. The 

coefficient of determination (R
2
) and 

the associated significance p-values) 

are given for each linear correlation.   

 

The distributions of the entropies of 

all the four parameters are perhaps 

better visualised in map view (Fig. 

6b). The results show that entropy 

distributions of the three parameters 

area, perimeter, and volume, are 

broadly similar. In particular, the 

lowest entropies of these three 

parameters are in the inner and older 

zones of the city, whereas the 

highest entropies are in the 

outermost zones, far away from the 

old centre of the city. By contrast, 

the entropy distributions of building 

heights are quite different. While the 

entropy in the old central zones is 

still low, the extreme entropy values 

occur at the north and south ends of 

the city.  

 

Thus, the highest height entropy is in the southernmost part of the city while the lowest 

entropy is in the northernmost part. The height distribution is bimodal and thus widely 

different from the power-law size distributions of the area, perimeter, and volume 

distributions. 
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Further analysis shows that the entropies of the size distributions of these three parameters, 

namely area, perimeter, and volume, are strongly correlated (Fig. 7).  We tested the 

correlations for all the 16 zones of Geneva and found that the coefficient of determination, 

R
2
, of these entropies varies from 0.87 to 0.91. While these parameters are not clearly 

independent, these strong linear correlations suggest that the entropy results for one 

parameter, for example building area, can be used to forecast the entropies of the other 

parameters, here the perimeters and volumes of the buildings. 

 

4.2. Expansion of urban and ecological systems: a thermodynamic analogy  

Urban areas and ecological systems are not isolated but rather open thermodynamic systems 

(Fig. 1) due to the fact that they receive energy and matter and interact with their 

surroundings. Thermodynamic potentials such Helmholtz free energy (Eqs. 8 and A9) can be 

used to model the expansion of both urban and ecological systems. Here the focus is on the 

urban systems. An urban neighbourhood or zone that has, on average, higher number of 

buildings or higher total street length than some other zones may be regarded as having 

expanded. This applies particularly within individual cities. For example, some studies with a 

focus on transport infrastructure have shown increasing average street length in the networks 

with increasing distance from the dense city centre (e.g. Gudmundsson and Mohajeri, 2013).  

The expansion of an urban area may be regarded as analogous to stretching or expansion of 

an elastic body. We consider here a one-dimensional version of such an expansion, but the 

results are easily generalised to two or three dimensions.  If the initial length of the elastic rod 

is Li and the final length is Lf, then during the application of the tensile force f the length 

increases by dL = Lf – Li. It then follows that the work done by the force is fdL. Substituting 

fdL for –pdV in Eq. (10) we get the change in Helmholtz free energy as: 

 

fdLSdTdF                                                                                                      (28)   

     

By analogy with Eq. (A6) then for constant length of the rod, the entropy S is related to the 

change in Helmholtz free energy, from Eq. (28), as follows: 

 

LT

F
S 












                                                                                                             (29) 

 

Similarly, from Eq. (28) and for constant temperature the tensile or extension force f is 

related to the change in Helmholtz free energy through the equation: 
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




                                                                                                               (30) 

 

Applying the mathematical property of exact differentials (Ragone, 1995) to Eq. (28), and 

denoting the infinitesimal tension by df , we obtain: 

 

LT T

f

L

S

























                                                                                                    (31) 

 

which is a Maxwell relation. For linear elastic solids the one-dimensional Hooke’s law may 

be stated as the ratio of normal stress σ to normal strain  , thus: 

 

 E                                                                                                                      (32) 

 

where E is Young’s modulus, a measure of stiffness or springiness of the solid. By definition, 

normal stress is force per unit area and normal strain is change in length divided by the 

original length. Thus, we have: 

 

A

df
                                                                                                                       (33) 

 

where A is the area, and 

 

L

dL
                                                                                                                       (34) 

 

Combining Eqs. (32-34), we obtain for Young’s modulus the relation: 

TL

f

A

L
E 












                                                                                                             (35) 

 

Solids normally expand on being heated. One measure of this expansion is the linear 

expansivity α, which is here the fractional change in dimension of the body (here in length of 

the rod) per degree change in temperature. In the present notation, the linear expansivity may 

be presented as: 
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the subscript f meaning that the tensile or extension force is constant. Using Eqs. (35) and 

(36), we can find a new expression for the right-hand side of Eq. (31) thus: 
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                                                                        (37) 

 

It therefore follows that the change in entropy with change in length or expansion of the rod, 

from Eqs. (31) and (36), becomes: 

 

EA
L

S
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



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                                                                                                         (38) 

 

which shows that so long as α is positive (normally the case except for rubber), the entropy 

increases with expansion of the solid. Although the result is here derived for solids, it applies 

as well to fluids; when gas expands, so that the volume occupied by the gas increases, its 

entropy increases. And, more generally, allowing matter to expand, for example by moving 

certain constraints, tends to increase the entropy. By analogy, entropy of the built 

environment, as reflected in increasing average area, average perimeter, or average volume of 

buildings, increases the configuration urban entropy (Fig. 6). 

 

4.3. Ecological implications 

Urban form is widely regarded as an important factor that affects ecological systems (e.g., 

Burton et al., 1996; 2000; Jabareen, 2006). In particular, compact urban form is thought to be 

ecologically favourable in the sense of using less energy per capita – both in terms of energy 

use in the built environment and energy (fuel) consumption for transportation (e.g., Jabareen, 

2006). In addition, compact urban form uses less land and, on the assumption of using less 

energy per capita, is thought to produce less pollution.  

 

While urban areas are generally thought to be marked by biodiversity decrease (e.g., Grimm 

et al., 2008; Sanford et al., 2008; MacDougall et al., 2013), some authors suggest the 

opposite. For example, in a study of biodiversity in cities in Switzerland, Home et al. (2010) 

suggest that cities are the sites of high biodiversity, partly because of heat-island effects, and 

partly because cities provide the sites for a variety of imported exotic plants and animals that 
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can thrive in the urban ecosystem but could not exist in its rural surroundings. This applies 

particularly to various thermophilous plants and animals that prefer urban systems. Based on 

these different views, it is clear that quantitative studies are needed so as to explore not only 

the exact ecological impacts of different urban forms and densities (urban compactness) but 

also how the impact may change from one place to another. 

 

One principal point widely regarded as being in favour of the compact city is that compact 

cities use urban land more efficiently and reduce the urban sprawl, which has considerable 

ecological benefits (e.g., Jabareen, 2006; Tratalos et al., 2007). One difficulty, however, is to 

decide on the criteria for assessing the compactness of a city, since the compactness normally 

varies through time. During the growth of many cities, there are periods when expansion 

dominates alternating with periods when densification (increasing compactness) dominates 

(e.g., Strano et al., 2012; Mohajeri and Gudmundsson, 2014). The expansion of cities 

generally increases the land coverage and thus changes the land-use and drives other types of 

environmental change. By analogy with the expansion of solids (Section 4.2), and the relation 

between city growth and entropy, entropy is likely to increase during city expansion and 

decreases during densification and increased compactness. This suggestion is supported by 

results on the relationships between entropy and street-network expansion/densification for 

many cities (Mohajeri and Gudmundsson, 2014). In addition, entropy of transport networks 

tends to increase with increasing distance from the central dense parts of the cities (e.g. 

Gudmundsson and Mohajeri, 2013).  

For Geneva it is clear that the inner zone (Paquis) is much more compact than the outer zone 

(Champel). This difference is reflected in land (site) coverage by buildings, which is about 

45% in the inner zone compared with about 18% in the outer zone, but also in the ratio 

between the total built volume and the associated land area – that is, the volume/area ratio 

(Table 3). For the inner zone the volume/area ratio is about 7.7 but about 3.2 for the outer 

zone. The compactness is also reflected in the population density, which is about 22,000 

people per
 
km

2
 in the inner zone compared with about 10,000 people per km

2
 in the outer 

zone. Overall, the parameters reflecting compactness are generally similar for the outer zone 

as for the city as a whole, whereas those for the inner zone are generally much higher than 

either of these (Table 3).  

For the 16 zones in Geneva, plots of the building density (number of buildings per km
2
) 

against the entropies of building volume, perimeter, and area show negative linear 

correlations (Fig. 8a-c). The correlations between building density and entropy of perimeters 

(R
2
 = 0.54) and area (R

2
 = 0.52) are reasonably strong, but less so between building density 

and entropy of volume (R
2
 = 0.39). The calculated p-values suggest that all these correlations 

are statistically significant (Fig. 8). The results also show a clear negative linear correlation 

between the street density and the street-length entropy. We use two definitions of street 

density namely, the number of streets per unit area (Fig 8d) and the total (cumulative) street 

length per unit area (Fig. 8e). The relation between street densities and length entropies is 

strong (R
2
 = 0.76 and 0.70) which is also indicated in the calculated p-values (Figs. 8d and e). 
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Fig. 8. Entropy of size distributions against density for the buildings and street networks of 

16 zones in Geneva. (a) Entropies of building volumes, entropies of building perimeters (b), 

and entropies of building areas (c) versus building density (number of buildings N per km
2
). 

(d) Length-entropy against street density (number of streets N per km
2
), (e) Length-entropy 

versus street density (total street-length per km
2
). p-values show the significance of R

2
 for 

each linear correlation. The maps show the gradients of building density (f) and the 

infrastructure density namely, street density (g) from the city centre to the outer parts of the 

city for the 16 zones in Geneva.  

 

Entropy is a measure of spreading (Gudmundsson and Mohajeri, 2013; Mohajeri and 

Gudmunsson, 2014) and thus one measure of the building and transport-network 

configurations. As the average built form parameters (area, perimeter, volume, and height) 
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increase in size, the spreading measured by entropy increases (Fig. 6a; Tables 1 and 2). 

Conversely, as the building density increases and the average built-form parameters decrease, 

the spreading becomes less and so does the entropy (Fig. 8a). Similarly, as the average 

distance between streets decreases (the city becomes more compact), their average length 

decreases and the spreading as measured by entropy decreases (Fig. 8d and e; Gudmundsson 

and Mohajeri, 2013). Thus, the more compact the built-up areas and the more confined the 

street network, the lower are their entropies. The result is in agreement with well-known 

thermodynamic effects of constraints; increasing the constraints (reducing the available 

volume or area) normally decreases the entropy (Reiss, 1996). We also show maps of the 

gradients of building density (Fig. 8f) and street density (Fig. 8g) for the 16 zones in Geneva.  

Another measure of the ecological impact of cities is the heat demand and associated CO2 

emissions by the built-up areas. The heat demand in the neighbourhoods of Geneva is not 

only related to the parameters of the built form but also to other factors (e.g. household size, 

income). The latter include the construction period, that is, the age of the buildings, insulation 

and local microclimate as well as complex socio-economic factors, such as income and 

number of people living in a particular household. All these parameters can change from one 

building to another and from one zone to another zone within the Geneva city. Whether the 

energy use (heat demand) and carbon emissions relate primarily to the built form as such, or 

to insulation, construction periods, or socio-economic factors remains to be explored.    

 

There have been comparatively few empirical studies as to whether the environmental 

impacts of urban areas becomes proportionally less or greater with increasing population 

(Zucchetto, 1983; Oliveira et al., 2014; Mohajeri et al., 2015). To explore this impact, we 

compare the number of people living in the 16 studies zones of Geneva and the number of 

buildings in each zone with the associated heat demand and CO2 emissions (Figs. 9, 10, 11). 

As mentioned in Section 3, the measurement data for heat demand and CO2 emissions within 

each neighbourhood in Geneva cover only about half the buildings in each zone. We 

therefore consider only those buildings and associated populations for which the heat demand 

and CO2 emissions data are available.   

 

The correlation between the number of buildings and the average annual heat demand (MJ) 

and annual CO2 emissions (kg) is sub-linear, meaning that the scaling exponent α in the 

relation is less than 1 (Fig. 9). The exponent and the 95% confidence intervals (CI) are as 

follows: α = 0.89, CI = [0.79-0.99] for Fig. 9a; α = 0.90, CI = [0.79-1.01] for Fig. 9b. The 

sub-linear relations show that for all the 16 zones, the heat demand and CO2 emissions grow 

at slower rates than the number of buildings. The relations can also be interpreted so that 1% 

increase in number of buildings is associated with about 0.9% increase in heat demand and 

CO2 emissions. This implies that as the number of buildings increases, proportionally less 

heat is consumed and less CO2 emitted and thus less ecological footprints.   

Similarly, comparisons between the populations on one hand and the annual heat demand 

(MJ) and CO2 emissions (kg) on the other hand show sub-linear relationships (Fig. 10). The 

scaling exponent at the 95% confidence intervals (CI) is α = 0.81, CI = [0.62-0.99] for Fig. 
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10a; α = 0.82, CI = [0.64-1.00] for Fig. 10b. These relations imply that as the population 

increases proportionally less fuel for heating per capita is consumed and less CO2 per capita 

is emitted (cf. Fig. 11). These relations can also be interpreted so that 1% increase in the 

population is associated with about 0.81% increase in fuel consumption and 0.82% increase 

in CO2 emissions, thereby proportionally decreasing ecological footprints. It follows that in 

terms of population, larger zones are more energy efficient and environmentally friendly than 

smaller ones.   

 
 

Fig. 9. Number of buildings against annual heat demand (MJ) and CO2 emissions (kg)  for the 

16 zones in Geneva (broken straight line is for a slope of 1, in which case the power of x in 

the inset equations would be 1). (a) Sub-linear relation between number of buildings and heat 

demand with the scaling exponent α = 0.89 ± 0.05 (R
2
 = 0.96 ± 0.06) and associated residuals 

for the single line fit in (a). (b) Sub-linear relation between number of buildings and CO2 

emissions with the scaling exponent α = 0.90 ± 0.05 (R
2
 = 0.95 ± 0.06) and associated 

residuals for the single line fit in (b).  

 

 

For a standard least-square linear regression, a measure of the goodness-of-fit between the 

calculated regression lines and the actual data can be obtained from the residuals of the 

curve-fitting procedure (Berendsen, 2011; Hughes and Hase, 2010; Motulsky, 2010). If the 

relation is statistically significant then the residuals should ideally be normally distributed 

about a zero mean and without any obvious structure. The residual plots for the population 

versus heat demand (MJ) and CO2 emissions are shown on the insets in Fig. 10. For the 

population versus heat demand (Fig. 10a), the mean of the residuals is 0.00, indicating that 

there is no clear structure. The standard deviation is 0.11, and the range (the difference 

between the maximum and minimum residual) is -0.43. For the population versus CO2 

emissions (Fig. 10b), the mean of the residuals is again 0.00 (so no clear structure). The 

standard deviation is 0.11, and the range is -0.42. The residuals are roughly normally 

distributed around a zero mean and all the residuals range between -1 and 1.   
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We also mapped the annual heat demand (MJ) per capita and the CO2 emissions (tonne) per 

capita in the city of Geneva (Fig. 11). Both maps show similar structure, indicating a decrease 

in heat demand per capita (Fig. 11a) and CO2 emissions per capita (Fig. 11b) from the core 

(city centre) to the outer parts. One possible explanation of these gradients may relate to the 

rather poor insulation of the buildings in the city centre compared with the more recent parts. 

This is, however, only one of several possible explanations, which need to be explored 

further when new data for the heat demand and CO2 emissions for all the buildings (Fig. 8f) 

become available. 

 

 
Fig. 10. Population against annual heat demand (MJ) and CO2 emissions (kg) for the 16 

zones in Geneva. (a) Sub-linear relation between population and heat demand with the 

scaling exponent α = 0.81 ± 0.08 (R
2
 = 0.86 ± 0.11) and associated residuals for the single 

line fit in (a). (b) Sub-linear relation between population and CO2 emissions with the scaling 

exponent α = 0.82 ± 0.08 (R
2
 = 0.87 ± 0.11) and associated residuals for the single line fit in 

(b). 

 

5. Discussion and conclusions 

There has been considerable discussion as to what urban forms are ecologically most 

favourable. Many have suggested that compact cities are ecologically favourable, since they 

use less energy per capita, thereby producing less pollution, and also use less land (e.g., 

Jabareen, 2006; Alberti, 2007; Tratalos et al., 2007). There is, however, considerable debate 

as to exact ecological impact of compact urban forms, and many of the proposed 

relationships between urban form and ecological factors are not well developed. This is partly 

because comparatively little quantitative research has been made as to these relationships 

(e.g., Alberti, 2007; Tratalos et al., 2007; Tannier et al., 2012). Also, to develop models and 

metrics that can be used and generalised for quantifying both the built environment and 

ecological processes remains a challenge.   
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Fig. 11. Gradients of annual heat demand (MJ) per capita (a) and CO2 emissions (t/yr) per 

capita (b) based on available data  for the 16 zones in Geneva.   

 

In this paper we provide methods for quantification of the spatial distributions and 

compactness of the built form. These methods provide results which can then be used for 

quantitative assessment of the impact of the built form on ecological systems. This 

quantification is partly through the Helmholtz free energy. The Helmholtz free energy can be 

related to the Gibbs-Shannon entropy, which provides a suitable metric of various built-form 

parameters. By analogy with the expansion of an elastic solid (here a rod, but easily 

generalised to two or three dimensions) subject to a tensile force, we show that the extension 

of the elastic body results in increase in entropy and interpret the expansion of the built area 

in Geneva, and the associated entropy increase, as in some ways an analogous process, 

resulting in increasing entropy with urban expansion or spreading.  

The calculations indicate that the higher the entropy of zones within Geneva city the greater 

the average areas, perimeters, and volumes of the buildings of the zone (Fig. 6). Entropy is 

commonly used as a measure of disorder, but in the present context may be regarded as a 

measure of spreading or dispersal of these three parameters, which characterise the geometric 

aspects of the buildings. In contrast to these three parameters, which follow power-law size 

distributions, the height distributions of buildings follow a bimodal distribution. The 

distribution of the entropies of these metrics of the built form in Geneva are perhaps best 

visualised in map view (Fig. 6). The results show that the entropies of building areas, 

perimeters, and volumes correlate well through the city, whereas the entropy of building 

heights has a very different distribution within the city.  
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The results for Geneva presented here indicate that the increase in entropy with increasing 

average values of the built-form parameters (area, perimeter, volume) can be formally related 

to spreading. Another indicator of city expansion or spreading is the number of buildings and 

population size. We find a sub-linear relation between population and number of buildings on 

one hand, and heat demand and CO2 emissions on the other hand for the 16 studied zones of 

Geneva (Figs. 9-11). The sub-linearity indicates that less heat is consumed per capita and less 

CO2 emitted per capita with increasing number of buildings or population sizes. The results 

indicate that the larger populations and number of buildings are more energy efficient and have less 

ecological footprints than smaller ones.  

The statistical-physics models presented here provide new insights into the complex 

relationship between the built environment and ecology. The methods provide metrics that 

can be interpreted in terms of dispersal and compactness of the built form and their relations 

with entropy through the Helmholtz free energy. These measures are here used to relate some 

parameters of the built environment with general urban-ecology concepts, such as the 

ecological effects of compactness. While there are some indications showing that increasing 

city compactness correlates with declining ecosystem performance, the variability is great 

and the quantitative data is, as yet, comparatively limited (Tratalos et al., 2007). Further 

development of the methods and results presented here should include additional CO2 

emission and heat-demand data on that half the buildings for which measurements are still 

lacking. Also, the relations between different urban patterns (dense, disperse) and the heat 

demand and CO2 emissions can be expanded so as to include many cities in Switzerland and 

elsewhere.        

Clearly, much work remains to be done in developing models to optimise the built form 

under different ecological conditions so as to minimise negative urban ecological effects. In 

addition, general models and alternative metrics are needed to be able integrate better urban 

and ecological systems. The proposed metrics for handling spatial complexity in urban 

systems can be expanded and used for analysing and quantifying various parameters of 

ecological systems. Thus, the statistical thermodynamics approach used here may be 

generally useful for analysing and understanding better how urban and ecological systems 

interact and how changes in built-form parameters can affect the urban ecosystem.   
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Appendix 

We can use the Boltzmann distribution, the partition function, and the Helmholtz free energy 

to derive a general formula for entropy. Using the symbol β for the term 1/kBT, Eq. (18) 

becomes: 


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EieZ
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                                                                                                                         (A1)   

The mean energy of the microsystem is the expected energy value <E>, which is just the 

probabilities Pi times the energies Ei, or: 
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Using Eqs. (19, A1), Eq. (A2) can be rewritten as: 
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or in terms of temperature, recalling that TkB/1 , as: 
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The mean energy can now be related to the Helmholtz free energy by identifying the mean 

energy with the internal energy of the thermodynamic system so that UE  . From Eq. (8), 

which assumes constant volume, we have: 

TSFUE                                                                                                                  (A5) 

Also, from Eq. (10): 
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Using Eq. (A6) for the entropy S in Eq. (A5) we obtain: 
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which can be rewritten as: 


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T
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From Eqs. (A4) and (A8), using the identity UE  , it follows that Helmholtz free energy 

may be written in the well-known form: 

ZTkF B ln                                                                                                                       (A9)      

Using TkB/1 , Eq. (A9) can also be written in the form: 

FeZ                                                                                                                              (A10) 

Equations (A9) and (A10) provide a link between the microscopic world, as specified through 

microstates, and the everyday macroscopic world which is described by the Helmholtz free 

energy. Eq. (A6) provides a relationship between Helmholtz free energy F and entropy S.  

Using this relationship, then on differentiating Eq. (A9) we get: 
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                                                          (A11) 

The volume V is here constant and, for systems with variable number of particles N, then 

their number is also assumed constant. Eq. (A11) establishes a clear relationship between 

entropy S and Helmholtz free energy F but can be written in a different and generally more 

useful form, namely the Gibbs-Shannon entropy formula, which can be derived as follows. 

We complete the differentiation of the logarithm of Z with respect to T, using Eq. (A1) for Z, 

to obtain: 
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and then combine Eqs. (A11) and (A12) to obtain the entropy S as: 



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From Eq. (19) we have: 

Z
Tk

E
P

B

i
i lnln                                                                                                             (A14) 

Rearranging the terms in Eq. (A113) and using negative sign for kB in order to make the 

entropy positive (the natural logarithm of the probability range between 0 and 1 is negative) 

we get:  
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Table 1. Statistical Data for 16 neighbourhoods in the city of Geneva   

 

Table 2. Entropy calculations (area, perimeter, volume, height) and annual heat demand (MJ) 

and associated CO2 (tonne) per capita, for 16 neighbourhoods/zones in the city of Geneva. Heat 

demand and CO2 emissions (the last two columns) are calculated based on available data and not 

cover the whole existing buildings.  

   

 

 

 

 

 

 

 

 

 

 

Geneva neighborhoods 

Building 

numbers,  

[-] 

Population, 

[-] 

Ave. area 

[m
2
] 

Ave. 

perimeter, 

[m] 

Ave. 

volume, 

[m
3
] 

Ave. 

height, [m] 

Bâtie – Acacias 420 4889 623 87 7082 13 

Bouchet – Moillebeau 874 15052 260 61 4120 13 

Champel 1055 18237 311 66 5415 15 

Charmilles – Châtelaine 988 23128 284 63 4480 14 

Cité – Centre 1193 7914 286 68 5694 17 

Délices – Grottes – Montbrillant 638 13921 334 63 5552 16 

Eaux-Vives – Lac 1174 20791 264 65 4566 16 

Florissant – Malagnou 762 14462 297 68 5215 15 

Grand-Pré – Vermont 464 10481 305 69 5161 16 

Jonction 836 15806 361 72 5898 16 

La Cluse 738 16298 267 64 4732 17 

O.N.U. 181 2237 615 94 10263 10 

Pâquis 754 10878 299 67 5081 16 

Sécheron 272 6907 418 75 6141 13 

St-Gervais – Chantepoulet 408 4550 351 73 7262 19 

St-Jean – Aire 661 9606 188 52 2725 11 

Geneva neighborhoods 

Entropy 

area 

(nat) 

Entropy 

perimeter 

(nat) 

Entropy 

volume 

(nat) 

Entropy 

height 

(nat) 

Annual heat 

demand 

MJ per 

capita 

CO2 

emissions, 

tonne per 

capita 

Bâtie – Acacias 3.73 2.39 3.73 3.09 39534 2.65 

Bouchet – Moillebeau 2.50 2.04 2.99 3.23 32593 2.16 

Champel 2.66 2.03 3.31 3.30 37918 2.59 

Charmilles – Châtelaine 2.53 1.93 2.78 3.19 26029 1.76 

Cité – Centre 2.14 1.87 2.96 3.12 74481 4.84 

Délices – Grottes – Montbrillant 3.00 2.03 3.47 3.22 28810 1.89 

Eaux-Vives – Lac 1.94 1.58 2.53 3.22 36030 2.39 

Florissant – Malagnou 2.31 2.00 2.85 3.28 41064 2.82 

Grand-Pré – Vermont 2.42 1.97 2.93 3.21 26909 1.83 

Jonction 2.90 2.06 3.21 3.13 29776 1.97 

La Cluse 1.96 1.74 2.54 3.21 30396 2.02 

O.N.U. 3.70 2.58 3.97 2.92 47438 2.99 

Pâquis 2.29 1.84 2.92 3.14 35317 2.35 

Sécheron 3.29 2.30 3.66 3.11 34610 2.41 

St-Gervais – Chantepoulet 2.66 2.09 3.28 3.02 60751 3.90 

St-Jean – Aire 1.95 1.75 2.37 3.02 25713 1.73 



Table 3. Density calculations of the built environment and transport infrastructure for 16 

neighbourhoods/zones in the city of Geneva   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Geneva neighborhoods 

Building 

density 

(n/km
2
) 

Street 

density 

(n/km
2
) 

Street density 

(total length 

./km
2
) 

Population 

density 

(n/km
2
) 

Land 

coverage 

(%) 

Volume/area 

ratio 

Bâtie – Acacias 182 69 10096 2122 11 1.29 

Bouchet – Moillebeau 546 94 13313 9401 14 2.25 

Champel 589 127 14586 10176 18 3.19 

Charmilles – Châtelaine 861 184 19402 20155 24 3.86 

Cité – Centre 1195 642 37535 7929 34 6.81 

Délices – Grottes – Montbrillant 934 239 21471 20387 31 5.19 

Eaux-Vives – Lac 863 260 21742 15287 23 3.94 

Florissant – Malagnou 654 137 15663 12406 19 3.41 

Grand-Pré – Vermont 751 154 20035 16973 23 3.88 

Jonction 363 114 10086 6861 13 2.14 

La Cluse 1476 388 31306 32596 39 6.98 

O.N.U. 176 42 8487 2172 11 1.8 

Pâquis 1512 385 29852 21808 45 7.68 

Sécheron 395 205 21415 10027 17 2.42 

St-Gervais – Chantepoulet 722 526 33886 8056 25 5.25 

St-Jean – Aire 691 123 16204 10043 13 1.88 
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