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(57) ABSTRACT 

A (H2 ) sensor composition includes a gas permeable matrix 
material intermixed and encapsulating at least one chemo­
chromic pigment. The chemochromic pigment produces a 
detectable change in color of the overall sensor composition 
in the presence ofH2 gas. The matrix material provides high 
H2 permeability, which permits fast permeation ofH2 gas. In 
one embodiment, the chemochromic pigment comprises 
Pd0/Ti02 . The sensor can be embodied as a two layer struc­
ture with the gas permeable matrix material intermixed with 
the chemochromic pigment in one layer and a second layer 
which provides a support or overcoat layer. 
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GAS PERMEABLE CHEMOCHROMIC 
COMPOSITIONS FOR HYDROGEN SENSING 

CROSS-REFERENCE TO RELATED 
APPLICATIONS 

This application claims the benefit of U.S. Provisional 
Patent Application Ser. No. 60/676,352, entitled "GAS PER­
MEABLE CHEMOCHROMIC COMPOSITION FOR 
HYDROGEN SENSING" filed onApr. 29, 2005, the entirety 10 

of which is incorporated herein by reference. 

STATEMENT REGARDING FEDERALLY 
SPONSORED RESEARCH OR DEVELOPMENT 

2 
closes a fast response, high sensitivity structure for optical 
detection oflow concentrations of hydrogen gas, comprising 
a substrate, a water-doped W03 layer coated on the substrate; 
and a palladium layer coated on the water-doped W03 layer. 
In related work, published U.S. Application No. 
20040037740 to Liu et al. discloses a sensor structure for 
chemochromic optical detection ofhydrogen gas comprising; 
a glass substrate a vanadium oxide layer coated on the glass 
substrate; and a palladium layer coated on the vanadium 
oxide layer. The hydrogen sensors disclosed by Liu et al. lack 
field stability. Moreover, such sensors have a tendency to 
crack and peel, and can be washed off by precipitation and/or 
condensation. 

U.S. Pat. No. 5,849,073 to Sakamoto discloses a pigment 

The U.S. Government may have certain rights to the inven­
tion based on NASA Grant No. NAG3-2751. 

FIELD OF THE INVENTION 

15 for sensing gas leakage which can be produced by adding at 
least one of the salts of platinum group metals to a slurry of 
particulate substrate, neutralizing the resultant mixture to 
deposit at least one of oxides, hydroxides and hydrated oxides 
of platinum group metals on the surfaces of the particulate 

The invention relates to chemochromic-based hydrogen 
sensors. 

BACKGROUND 

20 substrate, and if necessary, further adding to said slurry at 
least one of compounds of aluminum, silicon, titanium, zinc, 
zirconium, tin, antimony and cerium, neutralizing the result­
ant mixture to deposit at least one of compounds such as 
oxides, hydroxides and hydrated oxides of aluminum, silicon, 

25 titanium, zinc, zirconium, tin, antimony and cerium, on the 
particles. The compositions disclosed are typically quite 
impervious to gas penetration. Sakamoto requires very thin 
coatings (typically 2 mils) with relatively high concentrations 
of active chemochromic compounds. In addition, composi-

One of the future alternatives to current fossil-based trans­
portation fuels has been centered on hydrogen gas (H2 ). Cur­
rently, H2 is the primary energy source of today's space explo­
ration projects (e.g., as rocket propellant). It is also used in 
fuel cells that power a variety of machinery including auto­
mobiles. Furthermore, hydrogen is an important industrial 
commodity produced and used in many industries. For 
example, it is used for the reduction of metal oxides (e.g. iron 
ore), ammonia synthesis, and production of hydrochloric 
acid, methanol and higher alcohols, aldehydes, hydrogena- 35 

tion of various petroleum, coal, oil shale and edible oils, 
among others. However, H2 is a colorless, odorless gas, and is 
also a flammable gas with a lower explosive limit of about 4% 

30 tions disclosed by Sakamoto do not show selectivity to hydro­
gen. Thus, there remains a need for an improved, reliable and 
durable chemochromic hydrogen sensor for a variety of appli­
cations, including space, transportation, oil refineries, ammo­
nia and hydrogen plants. 

SUMMARY 

A hydrogen sensor is based on a composition of matter 
which comprises a gas permeable matrix material intermixed in air. Therefore reliable H2 sensors are required to detect 

possible leaks wherever H2 is produced, stored, or used. 40 and encapsulating at least one chemochromic pigment, the 
chemochromic pigment changing color in the presence ofH2 . 

In one embodiment the sensor includes a support or overcoat 
layer, wherein the composition is disposed on the support/ 

To detect H2 , sensors that consist of a palladium alloy 
Schottky diode on a silicon substrate are known. These sen­
sors are based on metal-oxide-semiconductor (MOS) tech­
nology that is used in the semiconductor industry. The gas 
sensing MOS structures are composed of a hydrogen-sensi- 45 

tive metal (palladium or its alloy) deposited on an oxide 
adherent to a semiconductor. This hydrogen sensor has been 
commercialized and exploited in detecting H2 leaks during 
pre-launches of space vehicles. Other research groups have 
also used palladium or the like as a sensing element for 50 

detecting H2 . A hydrogen sensor containing an array of 
micromachined cantilever beams coated with palladium/ 
nickel has also been reported. Semiconductors (e.g. gallium 
nitride) with wide band-gap have also been used to make 
MOS diodes for H2 detection. One of the concerns for all of 55 

these types of sensors using palladium or the like is the 
requirement of a high operating temperature (greater than 
200° C.) and further elevated temperatures (greater than 500° 
C.) to reactivate the sensing element, bringing about lengthy 
analysis. Another issue is sensitivity of the sensing element to 60 

other compounds commonly found in the atmosphere, 
including water vapor, various hydrocarbons and various 
reducing gases such as carbon monoxide and hydrogen sul­
fide. 

Although not conventionally used, chemochromic sensors 
for hydrogen sensing have been disclosed. For example, pub­
lished U.S. Application No. 20040023595 to Liu et al. dis-

overcoat layer. The support/overcoat layer can comprise a 
woven garment, or a silicone rubber or resin. In another 
embodiment, the support/overcoat layer comprises an opti-
cally transparent polymer or resin of acrylic, polycarbonate, 
polyurethane, cyclic olefin, styrenic copolymer, polyarylate, 
polyethersulfone, or polyimide containing an alicyclic struc­
ture, or an optically transparent polymer of polyester. In 
another embodiment, the support/overcoat layer comprises a 
plurality of optically transparent particles, the transparent 
particles having an average size less than a wavelength of 
visible light. 

The gas permeable matrix can comprise a polymer or rub­
ber having an oxygen permeability equal to or greater than an 
oxygen permeability oflow density polyethylene, or a cross 
linked polymer, such as poly(dimethylsiloxane) rubber. The 
gas permeable matrix can comprise a silicone resin. 

The chemochromic pigment generally comprises 1-50% 
by weight of the composition, such as 2-20% by weight of the 
composition. The composition can further comprise an 
accelerant or contrast additive mixed with the composition 
selected from Mo03 , (NH4 ) 6Mo70 24, and polyoxometalates 

65 that include V, Nb, Ta, Cr, Mo, and W. 
In another embodiment, a reversibility enhancing agent is 

encapsulated within the gas permeable matrix material, the 
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reversibility enhancing agent selected from polyoxocom­
pounds ofW or Mo, a transition metal dopant, a metal oxide 
support and a solid inorganic acid. 

The polyoxocompound ofW or Mo can be selected from 
silico-tungstic acid (STA) H4 [SiW120 40], phospho-tungstic 
acid (PTA) H3 [P(W3 0 10) 4 ], phospho-molybdic acid (PMA) 
H3 [P(Mo3 0 10) 4 ], decatungstate anion (DTA) [W100d4

-. 

The polyoxocompound of W or Mo can be silico-tungstic 
acid orphospho-tungstic acid. The support/overcoat layer can 
be selected from Ti02 , Al20 3 , Si02 , Zr02 , and molecular 
sieves. The support/overcoat can comprise activated alumina. 

The transition metal can be Pt, Pd, Ir, Ru, Rh or Ni. When 
the transition metal is platinum, the platinum can be in the 
form of nanoparticles having a median size in the range from 
10-100 nm. The solid inorganic acid can be boric acid. 

BRIEF DESCRIPTION OF THE DRAWINGS 

There is shown in the drawings embodiments which are 
presently preferred, it being understood, however, that the 
invention can be embodied in other forms without departing 
from the spirit or essential attributes thereof. 

FIG. 1 shows the schematic for an exemplary two layer 
hydrogen sensor composite according to an embodiment of 
the invention. 

FIG. 2 shows an exemplary calorimetric H2 sensor system 
that can be used with the invention. 

FIG. 3 shows a plurality ofH2 detection systems according 
to the invention positioned at several locations along a H2 

supply line which provides fuel to an electrochemical gen­
erator, such as a proton exchange membrane (PEM) fuel cell. 

4 
crosslinked polymers including silicone rubbers or silicone 
resins. Such polymers are water resistant which allows sensor 
composites according to the invention to remain useful in wet 
environment applications despite the water solubility of most 
pigments. A polysiloxane available in cross linked form that 
provides higher permeability to gases than other polymers is 
poly(dimethylsiloxane) rubber or PDMS. PDMS rubber can 
be prepared using a moisture cure typically referred to as a 
sealant, or as a high or low consistency preform of silicone 

10 rubber that is then cured to a rubbery consistency. Silicone 
resins are usually primarily composed oftrifunctional mate­
rial, so are generally highly crosslinked. Other gas permeable 
polymers are expected to show similar behavior, such as 

15 

natural rubber and ethyl cellulose. 
Cross linking is important for certain polymers for use with 

the invention, particularly those with low glass transition 
temperatures (T g) relative to the intended maximum tempera­
ture of sensor operation. PDMS has a reported T gof-123° C. 
Polymers that have no cross linking at all become viscous 

20 flowable liquids above T g· However, some cross linking ren­
ders the polymer above its T g leathery or elastomeric and thus 
resistant to flow. Highly cross linked polymers are strongly 
resistant to flow for T> T g and often provide moduli compa­
rable to aluminum. Therefore, a polymer such as PDMS 

25 requires cross linking for use in a sensor composition accord­
ing to the invention to prevent flow for operation at a tem­
perature above its Tg, such as room temperature. 

Opacity and/or transparency of the matrix material are 
generally preferred. Although the degree of transparency of 

30 the matrix material does not generally impact the color­
changing function of pigments according to the invention, 
transparency of the encapsulating compound can be impor­
tant in facilitating observation of the color change by naked 

FIG. 4 depicts color contrasts measurements, li.E, for four 
pigments prepared in accordance with the Example 20 con­
ducted both as a powder deposited on a glass slide (slide) and 
inside the RTV matrix with a pigment to matrix ratio of 1: 10 35 

(film). 

eye where even low levels of attenuation can be of signifi­
cance. 

In one embodiment of the invention, Pd0/Ti02 or other 
chemochromic pigment is combined with a moisture-curing 
silicone sealant in the specified ratio to give a composition 
that responds in a very controllable way to the presence ofH2 . 

FIG. 5 depicts the kinetics of coloration and bleaching for 
an exemplary reversible chemochromic hydrogen sensor 
according to the invention. 

DETAILED DESCRIPTION 
40 The active gas sensing pigment is generally 1 to 50 wt. % of 

the overall composition, and is 2-20 wt. % in a preferred 
embodiment. 

A hydrogen (H2 ) sensor comprises a gas permeable matrix 
material intermixed and encapsulating at least one chemo­
chromic pigment. The chemochromic pigment produces a 45 

detectable change in color of the overall sensor composition 
in the presence ofH2 gas. The matrix material provides high 

Sensor compositions according to the invention are gener­
ally applied to a solid surface, and then cured on the solid 
surface. In one embodiment, mixed Pd0/Ti02 or other 
chemochromic pigment mixed with silicone paste is applied 
to a backing sheet such as a woven glass fiber tape or possibly 
a woven garment. With this arrangement, only the side in 
contact with hydrogen will indicate the color change. U.S. 

H2 permeability, which permits fast permeation ofH2 gas. In 
one embodiment, the chemochromic pigment comprises 
Pd0/Ti02 . 

The high gas permeability matrix material allows the com­
position of this invention to be used in thicker segments and 
with lower concentrations of the active pigment as compared 

50 Application No. 20040115818, Puri, et al. discloses an appa­
ratus for detecting a leak site from a vessel having an inner 
and outer wall, comprising a chemical material response 
layer, and a semi-permeable layer. One of several selected 

to previous related sensors while retaining the rate and extent 
of color change similar to the free pigment. Most pigments 55 

have high water solubility. The encapsulating matrix also 
provides enhanced protection to weather and environmental 
contaminants, including those being moisture comprising, 
and retains that behavior at temperature extremes. For 
example, hydrogen detection color change using sensors 60 

according to the invention have been demonstrated at tem­
peratures as low as -40° C. 

A wide variety of gas permeable encapsulating matrix 
materials can be used with the invention. Preferred gas per­
meable polymers generally provide a gas permeability that is 65 

at least equal to the gas permeability oflow-density polyeth­
ylene. The encapsulating matrix materials are preferably 

semi-permeable materials is a rubbery polymer of polydim­
ethyl siloxane. When applied in the indicated layered manner, 
in contrast to the admixed technique of the present invention, 
the one side response reported above would not occur. 

Alternatively, the paste can be cast as a film on a release 
surface such as polytetrafluoroethylene or wax paper and then 
removed from the release surface after cure. After a 24-48 
hour room temperature cure, the resulting film is generally 
rubbery and can be used directly as an indicator, which allows 
the color change to be viewed from either side of the sensor 
when overcoated. In one embodiment, the sensor composite 
is overcoated with additional unpigmented clear silicone as 
shown in the exemplary hydrogen sensor composite sche-
matic shown in FIG. 1. The hydrogen sensor 10 includes a top 
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layer 1 comprising Pd0/Ti02 pigment in a silicone matrix 
disposed on a clear silicone overcoat layer 2 which does not 
include any pigment. In a preferred embodiment, the thick­
ness of the unpigmented silicone layer 2 is as thick as or 
thicker than the thickness of top layer 1 containing the pig­
ment. With the irreversible Pd0/Ti02 pigment, the overcoat 
composition may consist of a broad range of transparent 
polymers and resins. They may be much less permeable mate­
rials such as acrylic, polycarbonate, polyester, polyurethane, 
cyclic olefin, styrenic polymer, polyarylate, polyethersul- 10 

fone, and polyimide containing alicylic structure. Addition­
ally, the overcoat may following parameters: L *-Lightness 
Value, a*-position on red-green axis, and b*-position on 
yellow-blue axis. 

6 
sieves. Activated alumina is a preferred support. Noble metal 
dopants such as Pt, Pd, Ir, Rh, Ru added in small quantities to 
the sensor formulation have been found to be generally 
required for enhancing the kinetics of both coloration and 
bleaching of POC ofW and Mo. Pt is a preferred dopant; it is 
added to the formulation at the level of 0.001-5.0 wt. %, 
preferably, 0.05-1.0 wt.% (of total). The size of the Pt par­
ticles is typically in the range of 10-100 nm. The presence of 
Pt nano-particles (Ptnp) significantly accelerates electron 
transfer from molecular hydrogen to POC, e.g., STA) result­
ing in their rapid color change. Without Ptnp color change 
would occur very slowly (hours to days), or may not occur at 
all. Optionally, small amounts of boric acid could be added to 
the reversible pigment composition. The presence of boric 

M*~{ (L-L')2 +( a-a')2 +( b-b')2
} v2

. 

The equation above gives a standard measurement with 
which to compare different samples' color changes. The 
greater the li.E* value, the greater the color contrast. The 
chemochromic films can be analyzed both before and after 
exposure to hydrogen, allowing quantification of the intensity 
of color change. 

15 acid increases the surface acidity of the support material and 
enhances the performance of POC ofW, Mo (i.e., intensifies 
the color change). 

Although theory is not required to practice the present 
invention, it is believed that when H4 [SiW 120 40 ]/Ptnp is sub-

20 jected to hydrogen, the original grayish-white color of the 
composition changes to dark-blue (within seconds) due to the 
following chemical reaction: 

Films prepared with pure Pd0/Ti02 (ISK, Ti02-70%, 
Pd-1.0% byweight)have shown a li.E* valueof16.58. With 
the Ammonium Molybdate (AM) ISK samples ranging in 25 

I SK: AM ratios from 10: 1, 5: 1, the time required to complete 
the color change has been found to decrease with increasing 
concentration of AM (2.5 min to 1 min) while the intensity of 
the color change has been found to increase (li.E*=19.67-
18.85). The Molybdic Anhydride (MA)/ISK samples have 30 

been found to react more rapidly (all under one minute), with 
the intensity increasing with increased concentration of MA 
(li.E*=18.83for10:1 ratio ofISK:MA and li.E*=24.69for1: 1 
ratio ofISK:MA). 

The color change of the H2 sensor can be made to be 35 

reversible (i.e., the sensor reestablishes its original color after 
the exposure to H2 is ceased), by incorporating reversibility 
enhancing agents (e.g., the compounds of transition metals 
that rapidly change their oxidation state and, subsequently, 
color in a reducing/oxidizing environment). For reversibility 40 

to proceed, it is believed that the sensor composition must 
allow oxidizing species, such as oxygen, to also permeate to 
the pigment to regenerate the original color. Crosslinked 
polymers including silicone rubber (e.g. PDMS rubber), 
when used in conjunction with the reversibility enhancing 45 

agents, have demonstrated reversibility. In such composi­
tions, the original color is reestablished/regenerated gener­
ally within 1-30 seconds after exposure of the material to 
hydrogen has ceased. This behavior was demonstrated with a 
PDMS rubber encapsulating formulations comprising poly- 50 

oxocompounds (POC) of W and/or Mo immobilized on a 
support and doped with small amounts of noble metals. Par­
ticular examples of POC of W and Mo include, but are not 
limited to: silico-tungstic acid (STA) H4 [SiW 120 40], phos­
pho-tungstic acid (PTA) H3 [P(W3 0 10) 4 ]), phospho-molyb- 55 

die acid (PMA) H3 [P(Mo30 10) 4 ], decatungstate anions 
(DTA) [W100d4

-). It should be noted that STA and PTA 
show very fast kinetics (seconds) for both coloration and 
bleaching reactions, whereas PMA rapidly acquires color 
(seconds to minutes), but bleaches very slowly (days). Thus, 60 

depending on the particular application, the present invention 
provides an opportunity to fine-tune the kinetics of bleaching 
by changing the composition of the H2 sensor formulation. 
Various light-colored metal oxides in the form of fine pow­
ders (0.01-100 µm) can be used as a support forthe POC ofW 65 

and Mo. The examples of support materials include, but are 
not limited to -Ti02 , Al20 3 , Si02 , Zr02 , and molecular 

2W6.=0+H2~2W5+--0H (catalyzed by Ptnp) (1) 

where, for the sake of simplicity, W6+=0 and W5 +--0H 
moieties represent the original (oxidized) and reduced forms 
of STA. The reduced form of STA absorbs light in 600-800 
nmrange of solar spectrum, which corresponds to a dark-blue 
color of the substance. After the cessation of the exposure to 
hydrogen flow, the original color of the sensor reappears 
within few seconds (for both STA- and PTA-based sensors). 
The bleaching of the colored sensor can be attributed to the 
reaction of the reduced form of STA with oxygen from air 
with the regeneration of the original (oxidized) form of STA 
as follows: 

2W5+--0H+1h02~2w6·=0+H20 (catalyzed by 
Ptnp) (2) 

Control experiments indicated that reversible H2 sensors 
according to one embodiment of the present invention are not 
sensitive (i.e. do not change color) upon exposure to other 
reducing gases such as CO, CH4 and other hydrocarbons. A 
variety of molybdenum and tungsten compounds are 
expected to function similarly. It is noted that the class of 
reversibility enhancing agents (reversible pigments) overlaps 
the class of contrast additives, which, advantageously, indi­
cates their multi-functionality. The encapsulation of the 
reversible chemochromic pigment in the PDMS matrix some­
what slows down the kinetics of both coloration and bleach­
ing processes due to the diffusion limitation of H2 and 0 2 

transport through the matrix material. 
The invention provides a high level of selectivity to H2 

compared to a variety of other species. Other sensors tend to 
lack H2 selectivity. For example, U.S. Pat. No. 5,849,073 
noted above discloses that other reducing compounds will 
activate color change, such as carbon monoxide. Under iden­
tical conditions and in the presence of carbon monoxide, a 
silicone encapsulated system according to the invention did 
not undergo a color change, but when subjected to H2 gave the 
usual dark color. Additional benefits are the enhanced selec­
tivity described previously in which only the indicator side in 
contact with hydrogen changed color. As noted above, this 
effect can be reversed by overcoating to give a color change 
on both sides of the indicator material. This offers great 
potential to tailor the response to the application at hand to 
achieve the maximum safe hydrogen utilization environment. 

The invention can be used for a variety of hydrogen sensing 
applications. For example, the invention can be used for smart 
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paints, tapes and incorporated into other articles such as fab­
rics made used for closing, gloves, masks, and other articles to 
warn ofH2 leaks, and for applications requiring one sided and 
two sided responses. The invention can also be applied to fiber 
optic sensing heads to provide remote detection. The inven­
tion can be used for naked-eye human visual-sensing. In a 
preferred embodiment, sensors according to the invention can 
be included in automatic sensing systems, such as the sensing 
system shown in FIG. 1 described below. 

8 
points fell on a straight line. The slope of the line is a measure 
of the sensitivity of the chemochromic material used as a 
hydrogen sensing device. 

FIG. 2 shows an exemplary calorimetric H2 sensor system 
that can be used with the invention. The circuit shown in FIG. 
2 is not an element of the invention and is only provided to 
provide an exemplary sensing system that can be operated 
automatically and provide a measure of hydrogen concentra­
tion. The color sensor for detecting hydrogen 100 includes an 15 

op-amp 110 and a number ofresistors wired as a non-invert­
ing amplifier to provide a closed loop gain of l+RiR1 . R2 is 

Sensors according to the invention can be integrated sen­
sors that are fabricated on chip (e.g. Si), so that electronic 
components can also be on the same chip. For example, the 
matrix encapsulated reversible formulation can be deposited 
onto the end of a fiber optic thread on the chip connected to 
both a coherent light source and a photomultiplier that detects 
the intensity of light scattered back from the sensing surface. 

10 
As the hydrogen diffuses, selectively, from the surroundings 
into the matrix and interacts with the reversible pigment 
resulting in color change, the change in the intensity of the 
back scattered light is sensed by the photomultiplier, ampli-
fied and communicated to the electronic display device. 

FIG. 2 shows a plurality ofH2 detection systems 100 posi-
tioned at several locations along a H2 supply line, which 
provides fuel to an electrochemical generator 210, such as a 
PEM fuel cell. Valve 240 when closed turns off the supply of 
H2 to the electrochemical generator. Although not shown, the 

a photoresistor placed in the feedback loop of the circuit. This 
photo-resistor is then placed in a gas penetrable housing 120 
along with a light source, such as a red LED 124, and a sensor 
122 according to the invention. When light from the LED 124 

20 detection of H2 above a predetermined level can initiate a 
sequence of events that closes valve 240. 

is reflected off the sensor material 122, the resistance of 
photo-resistor R2 changes based on the color of the sensor 
122. The change in the value of the photoresistor R2 changes 
the gain of the op-amp circuit. Since different colors reflect 25 

different amounts oflight, a relationship between the gain of 
the circuit and the color of the sensor can be established. A 
calibration can be made using a calibrated gas flow experi­
ment. An AID converter (not shown) can then convert the gain 
into a digital output, such as an 8-bit number. After establish- 30 

ing what the values correspond to each color, a program can 
be written to automatically determine the color, the color 
corresponding to a hydrogen concentration. 

Irreversible sensors according to the invention operate on 
the basis that the color change in the chemochromic material 35 

is an accumulative effect. When leaks develop beneath a 
chemochromic sensor/tape, the hydrogen containing stream 
will permeate through the sensor material containing the 
color changing pigments within the matrix. Since the matrix 
(membrane) containing the chemochromic material is a 40 

porous material, the Darcy's law applies, which states that the 
discharge rate (flux) q is proportional to the gradient in driv­
ing force (i.e. the difference in the partial pressures of hydro­
gen in either sides of the membrane, li.PH2): 

EXAMPLES 

The present invention is further illustrated by the following 
specific examples, which should not be construed as limiting 
the scope or content of the invention in any way. 

Example 1 

A small quantity of pigment (ISK Singapore, Ti02-70%, 
Pd-1.0% wt) was mixed with an equal amount of water and 
applied to a clean dry microscope slide. The slide was heated 
to eliminate the water in preparation for contact with hydro­
gen. The hydrogen contact chamber consisted of a glass 
vacuum trap housing the microscope slide. Hydrogen gas was 
allowed to flow for 5 minutes before inserting the slide. After 
approximately 1.5 minutes of hydrogen exposure, the origi­
nal beige color of the pigment changed to gray. Upon removal 
from hydrogen chamber, the gray color remained. 

Example 2 

1.01 g of ISK, Ti02-70%, Pd-1.0% wt pigment was 
manually admixed with 9.19 g of moisture curing silicone 

In the above equation, Q is the flow rate of hydrogen 
permeating through the matrix, A is the flow cross section, K 

45 sealant (Dow Corning R 3145 RTV Adhesive/Sealant-Clear) 
to give 10.2 g of material. Some of this compound was applied 
to a clean microscope slide and allowed to cure for 24-48 
hours. This slide was then contacted with hydrogen gas as in 
Example 1. After approximately 1.5 minutes exposure to is the permeability coefficient for the membrane, and L is the 

membrane thickness. At the onset of the hydrogen leak and 
prior to the saturation and full reaction/utilization of the pig­
ments within the matrix, the rate ofhydrogen flow through the 
membrane will be proportional to the rate of color change: 
li.E/ li.t. Therefore, before all of the pigments within the mem­
brane have reacted, the rate of color change will be propor- 55 

tional to K-Ali.P H2/L. Since the partial pressure of hydrogen 

50 hydrogen gas, the original beige color of the cured compound 
changed to gray. Upon removal from hydrogen chamber, the 
gray color remained. 

at posterior membrane prior to full saturation is essentially 
zero, then li.E/li.t is proportional to K-APH2/L. PH2 is the 
partial pressure of hydrogen at the leak surface/membrane 
interface (often the pressure inside the pipe, etc.). For a given 60 

membrane, Kand Lare constant. At a given leak location, the 
flow cross section A is constant. Therefore, for given situation 
wherein a hydrogen leak has developed, the extent of color 
change li.E will be proportional to: PH2·li.t. li.t refers to the 
length of time for the hydrogen leak through the membrane. 65 

Indeed, when colormetric measurements of a hydrogen leak 
were made and results were plotted against PH2 ·li.t, the data 

Example 3 

A portion of the uncured pigment/sealant prepared by the 
method of Example 2 was applied to a piece of woven fiber­
glass tape. Using a draw down method with a blade, the 
surface of the woven fiberglass tape was covered with pig­
ment/sealant mixture and allowed to cure. After a cure time of 
24-48 hours, the flexible sheeting was ready for use as a 
hydrogen indicator. 

Example 4 

Yet another portion of the uncured pigment/sealant pre­
pared by the method of Example 2 was used to prepare a 
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rubber sheet indicator. A flat TEFLON™ board was lined 
with strips of vinyl tape to give the desired thickness to the 
sheet. The uncured pigment/sealant was spread on the 
TEFLON plate and a draw down blade was used to prepare a 
uniform sheet of material for curing. After 24-48 hours, a thin 5 

rubbery sheet was pealed off of the TEFLON board and used 
as a hydrogen indicator. 

Example 5 

10 
from -10° C. to 35° C., which is attributable to pigment 
reacting with CO gas and reaction was complete within 6 
minutes. 

Example 10 

32.3 mg ofISK, Ti02-70%, Pd-1.0% wt pigment was 
placed within the glass U-tube of Altamira AMI-200 TPD 
instrument and subjected to a 20 ml/min flow of 10% CO in 

18.0 mg ofISK, Ti02-70%, Pd-1.0% wt pigment was 
placed within the glass U-tube ofAltamiraAMI-200tempera­
ture programmed desorption (TPD) instrument. A flow of 20 
ml/min of 10% H2 in Argon gas was maintained through 
TPD's U-tube. Sample temperature within the TPD's U-tube 
was ramped up at a rate ofl 0° C./min from -100° C. to +50° 

10 Argon gas. Sample temperature was ramped up at a rate ofl 0° 
C./min from -30° C. to 40° C. A TCD signal was detected as 
well as sample color change within a temperature range of 
-10° C. to 35° C., which is attributable to pigment reacting 

15 
with CO gas and reaction was complete within about 8 min­
utes. 

C. During the temperature ramping of the sample, TPD's 
thermal conductivity detector (TCD) showed a signal pickup 
and a color change was also detected when temperatures 20 
reached -98° C. as a result of pigment reacting with the 
hydrogen gas. 

Example 11 

26.6 mg of the specimen prepared by the method of 
Example 4 was placed within the glass U-tube of Altamira 
AMI-200 TPD instrument and subjected to a 20 ml/min flow 
of25% CO in Argon gas. Sample temperature was ramped up 
at a rate of 10° C./min from -30° C. to 45° C. No color Example 6 
change, as a result of CO gas reacting with the pigment, was 

25 detected. 
18.6 mg ofISK, Ti02-70%, Pd-1.0% wt pigment was 

placed within the glass U-tube of Altamira AMI-200 TPD 
instrument. A flow of 20 ml/min of 10% H2 in Argon gas was 
maintained through TPD's U-tube. Sample temperature 
within the TPD's U-tube was kept isothermal at -90° C. A 30 

TCD signal was detected as well as sample color change, 
which was attributed to the pigment reacting with H2 gas. 
Reaction was complete in about 4 minutes. 

Example 7 35 

Example 12 

A sample from Example 11 was exposed to 10% H2 in 
Argon gas using Altamira AMI-200 TPD instrument. The 
sample temperature was kept isothermal at -30° C. A TCD 
signal was detected by the instrument, which was accompa­
nied by sample color change, similar to that of Example 7. 

Example 13 

17 .3 mg of matrix with no pigments was placed within the 
glass U-tube of Altamira AMI-200 TPD instrument and sub­
jected to a 20 ml/min flow of 10% CO in Argon gas. Sample 

40 temperature was ramped up at a rate of 10° C./min from -30° 
C. to 40° C. A TCD signal was detected similar to Example 
10, which is attributable to dissolution of CO gas in the 

26.1 mg of specimen prepared according to the method of 
Example 4 was placed within the glass U-tube of Altamira 
AMI-200 TPD instrument.A flow of20 m/min of 10% H2 in 
Argon gas was maintained through TPD's U-tube. Sample 
temperature within the TPD's U-tube was kept isothermal at 
-30° C. A TCD signal was detected and a sample color 
change as well which was attributed to the pigment reacting 
with the hydrogen gas. Reaction was complete in less than 4 45 

matrix. 

Example 14 
minutes. 

Example 8 

39.6 mg of Example 4 specimen was placed within the 
glass U-tube of AltamiraAMI-200 TPD instrument. A flow of 

11.6 mg of ISK, Ti02-70%, Pd-1.0% wt pigment was 
placed within the glass U-tube of Altamira AMI-200 TPD 
instrument and subjected to the vapors of 17.5% solution of 

50 hydrazine in water using the saturator. Two pulse chemisorp­
tion regiments were used: 50 pulses at 30° C. and 30 pulses at 
60° C. In both cases no reaction or color change was detected. 20 ml/min of 5% H2 in Argon gas was maintained through 

TPD's U-tube. Sample temperature within the TPD's U-tube 
was kept isothermal at -30° C. A TCD signal was detected 
and a sample color change as well which was attributed to the 55 

pigment reacting with the hydrogen gas. Reaction was slower 
than Example 7 and proceeded to completion in less than 6 

Example 15 

A sample of rubbery indicator sheet prepared according to 
the method of Example 4 was subjected to a set up simulating 
a leaking pipe. Two sections of stainless steel pipe with a 
threaded coupling were connected together loosely. One end 

minutes. 

Example 9 

18.2 mg ofISK, Ti02-70%, Pd-1.0% wt pigment was 
placed within the glass U-tube of Altamira AMI-200 TPD 
instrument and subjected to a 20 ml/min flow of 25% CO in 
Argon gas. Sample temperature was ramped up at a rate of 10° 
C./min from -30° C. to 40° C. A TCD signal was detected as 
well as sample color change within a range of temperatures 

60 of the line was attached to a hydrogen flow. The other end of 
the pipe was connected to a valve that if closed allowed 
hydrogen to leak out through the loose joint. A strip of the 
indicator sheet was wrapped around the joint and taped in 
place on the edge, and the hydrogen flow started. After clos-

65 ing the valve at the pipe's exit, hydrogen was allowed to leak 
through the joint for 3 minutes. The colorofthe exteriorofthe 
indicator sheet was beige, while the inner face of the indicator 
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sheet turned gray. This occurred regardless of the thickness of 
the rubbery indicator sheet used (minimum thickness used 
was 2.5 mils). 

Example 16 

In a manner similar to Example 15, a sample of the rubbery 
indicator sheet of Example 4 was exposed to the hydrogen 
leak except that the indicator sheet was covered with 
SCOTCH™ tape. This resulted in the exterior face of the 
indicator sheet to change color from beige to gray within 1-2 
minutes after exposure to hydrogen. The color of the interior 
face of the indicator sheet had also changed from beige to 
gray. 

Example 17 

A sample of the rubbery indicator sheet of Example 4 was 
immersed in water for 24 hours before use in the leaking pipe 
test of Example 15. This sample was evaluated as in Example 
16 (Scotch tape covering). Both faces of the indicator sheet 
changed color within 1-2 minutes of hydrogen exposure. 

Example 18 

A sample of the rubbery indicator sheet of Example 4 was 
coated over with a layer of virgin clear silicone sealant of 
equal or greater thickness, and allowed to cure for 24-48 
hours. The resulting cured double-layered sheet was sub­
jected to the leaking pipe test of Example 15 by wrapping the 
indicator sheet with the clear overcoat around the loose pipe 
joint with the clear overcoat face on the exterior/outside. After 
1-2 minutes of hydrogen exposure both sides of the over­
coated indicator sheet had changed their color to gray. 

Example 19 

12 
placed in an oven, set at 100° C., until dry. Once dry, the 
sample was crushed into a powder and stored in a glass vial. 

Example 21 

Color contrasts measurements, li.E, of the four pigments 
prepared in accordance with the Example 20 was conducted 
both as a powder deposited on a glass slide (slide) and inside 
the RTV matrix with a pigment to matrix ratio of 1: 10 (film). 

10 Samples' colorimetric parameters a*, b*, c*, and L were 
measured before and after exposure to 100% H2 gas and then 
li.E values were calculated. Results are shown in FIG. 4. 

15 
Example 22 

An exemplary reversible H2 sensor formulation formed 
according to an embodiment of the invention is now 
described. 0.5 g ofTi02 powder (average particle size 25-70 
nm) was mixed with 0.5 g ofH3 [P(W30 10) 4 ] (Aldrich). 5 ml 

20 of the colloidal platinum solution (0.025 wt.% Pt) was added 
to this mixture. The colloidal Pt solution was obtained by 
mixing 2.5 ml of the aqueous solutionofH2 PtCl6 (0.1 wt.%) 
with 2.5 ml of the aqueous solution (0.01 wt. %) of the 
protective polymer (polyvinyl alcohol) followed by adding 

25 0.1 g of sodium borohydride (NaBH4 ) to the mixture under 
well-stirred conditions at room temperature until all hydro­
gen bubbles ceased to evolve. The Ti02-H3 [P(W 30 10) 4-Pt 
slurry was carefully mixed and let dry overnight at ambient 
conditions. The resulting grayish powder was carefully mixed 

30 with 5 g of silicone sealant (Dow Coming R 3145 RTV, and 
the mixture was applied to the surface of a smooth sheet of 
perfluorinated polymer to form a thin film. After a 24-48 hour 
room temperature cure, the resulting rubbery film became 
ready for use as a reversible hydrogen sensor 

35 

Example 23 

0.6 g of activated alumina (Alltech) and 0.2 g of Pt (1 wt. 
In another experiment, Mo03 or (NH4 ) 6Mo70 24 was added % )/ Al2 0 3 (Aldrich) was ground in an agate mortar to a fine 

to compositions according to the invention in levels varying 40 powder (less than 100 µm). 0.8 g of silico-tungstic acid pow-
from equivalent to !Ox the molecular content of PdO which der (AlfaAesar) was added to the above mixture. The result-
gave a chemochromic system that showed a visually darker ing powder was carefully mixed and ground in an agate mor-
color upon contact with hydrogen than without the molybde- tar. The mixture was placed on a watch glass (about 10 cm in 
num complex and/or oxide. In addition, the extent and rate of diameter) and 2-3 ml of distilled water was added to the 
color change also was found to significantly increase com- 45 powder to generate a thick slurry. The slurry was carefully 
pared to that without the molybdenum complex and/or oxide. mixed and left to dry overnight. After drying, the powder was 

Example 20 
crushed in an agate mortar and ground to a fine powder (less 
than 100 µm). The resulting powder was mixed with the 
silicone sealant (3145 RTV) in about 1 :6 weight ratio. A thin 

Several chemochromic pigments using four different Ti02 

support: Aldrich (mainly, Ti02 , rutile crystalline form) with 
50 film (about 0.5 mm) was made from the powder-sealant mix­

ture, which was spread over a wax paper and left to cure 
undisturbed overnight. Resulting grayish-white tape could be 
easily peeled off the wax paper and used as a reversible H2 

sensor. FIG. 5 depicts the kinetics of coloration and bleaching 

an average particle size of 1 micron, Fisher Scientific Ti02 , 

Nanotek Ti02 , and P-25 Degussa nano size Ti02 were synthe­
sized and compared to ISK, Ti02-70%, Pd-1.0% wt. In a 
beaker, 50 mL of de-ionized (DI) water and 5.0 g of Ti02 

sample were mixed. With a magnetic stir bar, the mixture was 
continuously stirred, while heating to a temperature of70° C. 
Saturated NaOH solution was used to maintain the pH at 
levels between 10 and 11. In a separate beaker, 10 mL of DI 
water, 0.25 g of PdC12 , and 2.5 mL of 12N HCl were mixed. 60 

The PdC12 solution was slowly added to the support solution, 
carefully, to maintain the solution pH between 10 and 11. 
Once all of the PdC12 had been combined with the support, the 
pH of the solution was lowered to 8 using concentrated HCl 
and allowing the stirring to continue at 70° C. for one hour. 65 

After one hour, heating was stopped and the solution was 
filtered. The residue washed with DI water several times and 

55 using the prepared reversible H2 sensor. 

Example 24 

In a manner like the Example 21, except that 0.4 g of boric 
acid powder (Aldrich) was added to the mixture of activated 
alumina, Pt/Al20 3 and STA. Presence ofboric acid was found 
to intensify the coloration in the presence of hydrogen. 

This invention can be embodied in other forms without 
departing from the spirit or essential attributes thereof and, 
accordingly, reference should be had to the following claims 
rather than the foregoing specification as indicating the scope 
of the invention. 
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We claim: 
1. A hydrogen sensor, comprising: 
a composite layer comprising a gas permeable crosslinked 

polymer intermixed and encapsulating a plurality of 
chemochromic pigment particles embedded therein, 
said plurality of chemochromic pigment particles 
changing color in the presence ofH2 , wherein said plu­
rality of chemochromic pigment particles comprise 
1-50% by weight of said composite layer; 

wherein said gas permeable crosslinked polymer com­
prises a silicone rubber or a silicone resill" 

wherein said gas permeable crosslinked pol~mer directly 
contacts said plurality of chemochromic pigment par­
ticles, 

and wherein said encapsulating requires said H2 to be 
transported through said gas permeable crosslinked 
polymer before said plurality of chemochromic pigment 
particles change color in the presence of said H2 . 

2. The sensor of claim 1, further comprising a support or 
overcoat layer, wherein said composite layer is disposed on 
said support/overcoat layer. 

3. The sensor of claim 2, wherein said support/overcoat 
layer comprises a silicone rubber or resin. 

4. The sensor of claim 2, wherein said support/overcoat 
layer comprises an optically transparent polymer or resin of 
acrylic, polycarbonate, polyurethane, cyclic olefin, styrenic 
copolymer, polyarylate, polyethersulfone, or polyimide con­
taining an alicyclic structure. 

14 
10. The sensor of claim 1, wherein said crosslinked poly­

mer comprises said silicone resin. 
11. The sensor of claim 1, wherein said plurality of chemo­

chromic pigment particles comprise irreversible chemochro­
mic pigment particles. 

12. The sensor of claim 1, wherein said gas permeable 
crosslinked polymer has an oxygen permeability equal to or 
greater than an oxygen permeability of low density polyeth­
ylene, and wherein said sensor is a reversible sensor. 

10 
13. The sensor of claim 12, further comprising an acceler-

ant or contrast additive mixed with said composite layer 
selected from the group consisting ofMo03 , (NH4 ) 6Mo7 0 24, 

and polyoxometalates that include V, Nb, Ta, Cr, Mo and W. 
14. The sensor of claim 12, further comprising a reversibil­

ity enhancing agent encapsulated within said gas permeable 
15 crosslinked polymer, wherein said reversibility enhancing 

agent regenerates an original color of said irreversible sensor 
after exposure to said H2 has ceased, wherein said reversibil­
ity enhancing agent is selected from the group consisting of a 
polyoxocompound of W or Mo, a transition metal dopant, a 

20 metal oxide support and a solid inorganic acid. 
15. The sensor of claim 14, wherein said polyoxocom­

pound of W or Mo is selected from the group consisting of 
silico-tungstic acid (STA) H4 [SiW 120 40], phospho-tungstic 
acid (PTA) H3 [P(W3 0 10) 4 ], phospho-molybdic acid (PMA) 

25 H3 [P(Mo3 0 10) 4 ] and decatungstate anion (DTA) [W100d 
4-

5. The sensor of claim 2, wherein said support/overcoat 30 
layer comprises an optically transparent polymer of polyes­
ter. 

16. The sensor of claim 14, wherein said polyoxocom­
pound ofW or Mo is silico-tungstic acid or phospho-tungstic 
acid. 

17. The sensor of claim 14, further comprising a support or 
overcoat layer, wherein said composite layer is disposed on 
said support/overcoat layer, said support/overcoat layer being 
selected from the group consisting of Ti02 , Al2 0 3 , Si02 , 

Zr02 and molecular sieves. 

6. The sensor of claim 2, wherein said support/overcoat 
layer comprises a plurality of optically transparent particles, 
said transparent particles having an average size less than a 
wavelength of visible light. 

7. The sensor of claim 1, wherein said plurality of pigment 
particles comprise 2-20% by weight of said composite layer. 

8. The sensor of claim 1, wherein said crosslinked polymer 
is a homopolymer. 

9. The sensor of claim 1, wherein said crosslinked polymer 
comprises said silicone rubber. 

35 

40 

18. The sensor of claim 14, further comprising a support or 
overcoat layer, wherein said composite layer is disposed on 
said support/overcoat layer, said support/overcoat compris­
ing activated alumina. 

19. The sensor of claim 14 wherein said transition metal is 
selected from the group consisting of Pt, Pd, Ir, Ru, Rh and Ni. 

* * * * * 
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