423 research outputs found

    OR4 ASSOCIATIONS BETWEEN JOBLESSNESS AND ALL-CAUSE HEALTH SERVICES UTILIZATION IN DIABETIC WORKING AGE ADULTS IN THE UNITED STATES

    Get PDF

    Distributed Cyber-Attack Detection in the Secondary Control of DC Microgrids

    Get PDF
    The paper considers the problem of detecting cyber-attacks occurring in communication networks typically used in the secondary control layer of DC microgrids. The proposed distributed methodology allows for scalable monitoring of a microgrid and is able to detect the presence of data injection attacks in the communications among Distributed Generation Units (DGUs) - governed by consensus-based control - and isolate the communication link over which the attack is injected. Each local attack detector requires limited knowledge regarding the dynamics of its neighbors. Detectability properties of the method are analyzed, as well as a class of undetectable attacks. Some results from numerical simulation are presented to demonstrate the effectiveness of the proposed approach

    Near-field diffraction of fs and sub-fs pulses: super-resolutions of NSOM in space and time

    Full text link
    The near-field diffraction of fs and sub-fs light pulses by nm-size slit-type apertures and its implication for near-field scanning optical microscopy (NSOM) is analyzed. The amplitude distributions of the diffracted wave-packets having the central wavelengths in the visible spectral region are found by using the Neerhoff and Mur coupled integral equations, which are solved numerically for each Fourier's component of the wave-packet. In the case of fs pulses, the duration and transverse dimensions of the diffracted pulse remain practically the same as that of the input pulse. This demonstrates feasibility of the NSOM in which a fs pulse is used to provide the fs temporal resolution together with nm-scale spatial resolution. In the sub-fs domain, the Fourier spectrum of the transmitted pulse experiences a considerable narrowing that leads to the increase of the pulse duration in a few times. This imposes a limit on the simultaneous resolutions in time and space.Comment: 5 figure

    Terahertz imaging and spectroscopy of large-area single-layer graphene

    Full text link
    We demonstrate terahertz (THz) imaging and spectroscopy of a 15x15-mm^2 single-layer graphene film on Si using broadband THz pulses. The THz images clearly map out the THz carrier dynamics of the graphene-on-Si sample, allowing us to measure sheet conductivity with sub-mm resolution without fabricating electrodes. The THz carrier dynamics are dominated by intraband transitions and the THz-induced electron motion is characterized by a flat spectral response. A theoretical analysis based on the Fresnel coefficients for a metallic thin film shows that the local sheet conductivity varies across the sample from {\sigma}s = 1.7x10^-3 to 2.4x10^-3 {\Omega}^-1 (sheet resistance, {\rho}s = 420 - 590 {\Omega}/sq).Comment: 6 pages, 5 figure

    iNucs:Inter-nucleosome interactions

    Get PDF
    [Motivation] Deciphering nucleosome–nucleosome interactions is an important step toward mesoscale description of chromatin organization but computational tools to perform such analyses are not publicly available. [Results] We developed iNucs, a user-friendly and efficient Python-based bioinformatics tool to compute and visualize nucleosome-resolved interactions using standard pairs format input generated from pairtools

    DC-electric-field-induced and low-frequency electromodulation second-harmonic generation spectroscopy of Si(001)-SiO2_2 interfaces

    Get PDF
    The mechanism of DC-Electric-Field-Induced Second-Harmonic (EFISH) generation at weakly nonlinear buried Si(001)-SiO2_2 interfaces is studied experimentally in planar Si(001)-SiO2_2-Cr MOS structures by optical second-harmonic generation (SHG) spectroscopy with a tunable Ti:sapphire femtosecond laser. The spectral dependence of the EFISH contribution near the direct two-photon E1E_1 transition of silicon is extracted. A systematic phenomenological model of the EFISH phenomenon, including a detailed description of the space charge region (SCR) at the semiconductor-dielectric interface in accumulation, depletion, and inversion regimes, has been developed. The influence of surface quantization effects, interface states, charge traps in the oxide layer, doping concentration and oxide thickness on nonlocal screening of the DC-electric field and on breaking of inversion symmetry in the SCR is considered. The model describes EFISH generation in the SCR using a Green function formalism which takes into account all retardation and absorption effects of the fundamental and second harmonic (SH) waves, optical interference between field-dependent and field-independent contributions to the SH field and multiple reflection interference in the SiO2_2 layer. Good agreement between the phenomenological model and our recent and new EFISH spectroscopic results is demonstrated. Finally, low-frequency electromodulated EFISH is demonstrated as a useful differential spectroscopic technique for studies of the Si-SiO2_2 interface in silicon-based MOS structures.Comment: 31 pages, 14 figures, 1 table, figures are also available at http://kali.ilc.msu.su/articles/50/efish.ht
    • 

    corecore