537 research outputs found

    Insight into the Sustainable Integration of Bio- and Petroleum Refineries for the Production of Fuels and Chemicals.

    Full text link
    A petroleum refinery heavily depends on crude oil as its main feedstock to produce liquid fuels and chemicals. In the long term, this unyielding dependency is threatened by the depletion of the crude oil reserve. However, in the short term, its price highly fluctuates due to various factors, such as regional and global security instability causing additional complexity on refinery production planning. The petroleum refining industries are also drawing criticism and pressure due to their direct and indirect impacts on the environment. The exhaust gas emission of automobiles apart from the industrial and power plant emission has been viewed as the cause of global warming. In this sense, there is a need for a feasible, sustainable, and environmentally friendly generation process of fuels and chemicals. The attention turns to the utilization of biomass as a potential feedstock to produce substitutes for petroleum-derived fuels and building blocks for biochemicals. Biomass is abundant and currently is still low in utilization. The biorefinery, a facility to convert biomass into biofuels and biochemicals, is still lacking in competitiveness to a petroleum refinery. An attractive solution that addresses both is by the integration of bio- and petroleum refineries. In this context, the right decision making in the process selection and technologies can lower the investment and operational costs and assure optimum yield. Process optimization based on mathematical programming has been extensively used to conduct techno-economic and sustainability analysis for bio-, petroleum, and the integration of both refineries. This paper provides insights into the context of crude oil and biomass as potential refinery feedstocks. The current optimization status of either bio- or petroleum refineries and their integration is reviewed with the focus on the methods to solve the multi-objective optimization problems. Internal and external uncertain parameters are important aspects in process optimization. The nature of these uncertain parameters and their representation methods in process optimization are also discussed

    Secondary Organic Aerosol Formation from the β-Pinene+NO3 System: Effect of Humidity and Peroxy Radical Fate

    Get PDF
    The formation of secondary organic aerosol (SOA) from the oxidation of β-pinene via nitrate radicals is investigated in the Georgia Tech Environmental Chamber (GTEC) facility. Aerosol yields are determined for experiments performed under both dry (relative humidity (RH) \u3c 2 %) and humid (RH = 50 % and RH = 70 %) conditions. To probe the effects of peroxy radical (RO2) fate on aerosol formation, RO2 + NO3 dominant and RO2 + HO2 dominant experiments are performed. Gas-phase organic nitrate species (with molecular weights of 215, 229, 231, and 245 amu, which likely correspond to molecular formulas of C10H17NO4, C10H15NO5, C10H17NO5, and C10H15NO6, respectively) are detected by chemical ionization mass spectrometry (CIMS) and their formation mechanisms are proposed. The NO+ (at m/z 30) and NO2+ (at m/z 46) ions contribute about 11 % to the combined organics and nitrate signals in the typical aerosol mass spectrum, with the NO+ : NO2+ ratio ranging from 4.8 to 10.2 in all experiments conducted. The SOA yields in the RO2 + NO3 dominant and RO2 + HO2 dominant experiments are comparable. For a wide range of organic mass loadings (5.1–216.1 μg m−3), the aerosol mass yield is calculated to be 27.0–104.1 %. Although humidity does not appear to affect SOA yields, there is evidence of particle-phase hydrolysis of organic nitrates, which are estimated to compose 45–74 % of the organic aerosol. The extent of organic nitrate hydrolysis is significantly lower than that observed in previous studies on photooxidation of volatile organic compounds in the presence of NOx. It is estimated that about 90 and 10 % of the organic nitrates formed from the β-pinene+NO3 reaction are primary organic nitrates and tertiary organic nitrates, respectively. While the primary organic nitrates do not appear to hydrolyze, the tertiary organic nitrates undergo hydrolysis with a lifetime of 3–4.5 h. Results from this laboratory chamber study provide the fundamental data to evaluate the contributions of monoterpene + NO3 reaction to ambient organic aerosol measured in the southeastern United States, including the Southern Oxidant and Aerosol Study (SOAS) and the Southeastern Center for Air Pollution and Epidemiology (SCAPE) study

    All Hands on Deck: Transdisciplinary Approaches to Emerging Infectious Disease

    Get PDF
    The increasing burden of emerging infectious diseases worldwide confronts us with numerous challenges, including the imperative to design research and responses that are commensurate to understanding the complex social and ecological contexts in which infectious diseases occur. A diverse group of scientists met in Hawaii in March 2005 to discuss the linked social and ecological contexts in which infectious diseases emerge. A subset of the meeting was a group that focused on ‘‘transdisciplinary approaches’’ to integrating knowledge across and beyond academic disciplines in order to improve prevention and control of emerging infections. This article is based on the discussions of that group. Here, we outline the epidemiological legacy that has dominated infectious disease research and control up until now, and introduce the role of new, transdisciplinary and systems-based approaches to emerging infectious diseases.Wedescribe four cases of transboundary health issues and use them to discuss the potential benefits, as well as the inherent difficulties, in understanding the social–ecological contexts in which infectious diseases occur and of using transdisciplinary approaches to deal with them

    Uncovering the novel characteristics of Asian honey bee, Apis cerana, by whole genome sequencing

    Get PDF
    Citation: Park, D., Jung, J. W., Choi, B. S., Jayakodi, M., Lee, J., Lim, J., . . . Kwon, H. W. (2015). Uncovering the novel characteristics of Asian honey bee, Apis cerana, by whole genome sequencing. Bmc Genomics, 16, 16. doi:10.1186/1471-2164-16-1Background: The honey bee is an important model system for increasing understanding of molecular and neural mechanisms underlying social behaviors relevant to the agricultural industry and basic science. The western honey bee, Apis mellifera, has served as a model species, and its genome sequence has been published. In contrast, the genome of the Asian honey bee, Apis cerana, has not yet been sequenced. A. cerana has been raised in Asian countries for thousands of years and has brought considerable economic benefits to the apicultural industry. A cerana has divergent biological traits compared to A. mellifera and it has played a key role in maintaining biodiversity in eastern and southern Asia. Here we report the first whole genome sequence of A. cerana. Results: Using de novo assembly methods, we produced a 238 Mbp draft of the A. cerana genome and generated 10,651 genes. A. cerana-specific genes were analyzed to better understand the novel characteristics of this honey bee species. Seventy-two percent of the A. cerana-specific genes had more than one GO term, and 1,696 enzymes were categorized into 125 pathways. Genes involved in chemoreception and immunity were carefully identified and compared to those from other sequenced insect models. These included 10 gustatory receptors, 119 odorant receptors, 10 ionotropic receptors, and 160 immune-related genes. Conclusions: This first report of the whole genome sequence of A. cerana provides resources for comparative sociogenomics, especially in the field of social insect communication. These important tools will contribute to a better understanding of the complex behaviors and natural biology of the Asian honey bee and to anticipate its future evolutionary trajectory.Citation: Park et al.: Uncovering the novel characteristics of Asian honey bee, Apis cerana, by whole genome sequencing. BMC Genomics 2015 16:1

    Completeness of hepatitis, brucellosis, syphilis, measles and HIV/AIDS surveillance in Izmir, Turkey

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>According to the surveillance system in Turkey, most diseases are notified only by clinicians, without involving laboratory notification. It is assumed that a considerable inadequacy in notifications exists; however, this has not been quantified by any researcher. Our aim was to evaluate the completeness of communicable disease surveillance in the province of Izmir, Turkey for the year of 2003 by means of estimating the incidences of diseases.</p> <p>Methods</p> <p>Data on positive laboratory results for the notifiable and serologically detectable diseases hepatitis A, B, C, brucellosis, syphilis, measles and HIV detected in 2003 in Izmir (population 3.5 million) were collected from serology laboratories according to WHO surveillance standards and compared to the notifications received by the Provincial Health Directorate. Data were checked for duplicates and matched. Incidences were estimated with the capture-recapture method. Sensitivities of both notifications and laboratory data were calculated according to these estimates.</p> <p>Results</p> <p>Among laboratories performing serologic tests (n = 158) in Izmir, 84.2% accepted to participate, from which 23,515 positive results were collected. Following the elimination of duplicate results as well as of cases residing outside of Izmir, the total number was 11,402. The total number of notifications was 1802. Notification rates of cases found in laboratories were 31.6% for hepatitis A, 12.1% for acute hepatitis B, 31.8% for brucellosis, 25.9% for syphilis and 100% for HIV confirmation.</p> <p>Conclusions</p> <p>It was discovered that for hepatitis A, B, C, brucellosis and syphilis, there is a considerable under-notification by clinicians and that laboratory data has the potential of contributing greatly to their surveillance. The inclusion of laboratories in the surveillance system of these diseases could help to achieve completeness of reporting.</p

    A framework for the successful implementation of food traceability systems in China

    Get PDF
    Implementation of food traceability systems in China faces many challenges due to the scale, diversity and complexity of China’s food supply chains. This study aims to identify critical success factors specific to the implementation of traceability systems in China. Twenty-seven critical success factors were identified in the literature. Interviews with managers at four food enterprises in a pre-study helped identify success criteria and five additional critical success factors. These critical success factors were tested through a survey of managers in eighty-three food companies. This study identifies six dimensions for critical success factors: laws, regulations and standards; government support; consumer knowledge and support; effective management and communication; top management and vendor support; and information and system quality

    Increased Oxidative Burden Associated with Traffic Component of Ambient Particulate Matter at Roadside and Urban Background Schools Sites in London

    Get PDF
    As the incidence of respiratory and allergic symptoms has been reported to be increased in children attending schools in close proximity to busy roads, it was hypothesised that PM from roadside schools would display enhanced oxidative potential (OP). Two consecutive one-week air quality monitoring campaigns were conducted at seven school sampling sites, reflecting roadside and urban background in London. Chemical characteristics of size fractionated particulate matter (PM) samples were related to the capacity to drive biological oxidation reactions in a synthetic respiratory tract lining fluid. Contrary to hypothesised contrasts in particulate OP between school site types, no robust size-fractionated differences in OP were identified due high temporal variability in concentrations of PM components over the one-week sampling campaigns. For OP assessed both by ascorbate (OPAA m−3) and glutathione (OPGSH m−3) depletion, the highest OP per cubic metre of air was in the largest size fraction, PM1.9–10.2. However, when expressed per unit mass of particles OPAA µg−1 showed no significant dependence upon particle size, while OPGSH µg−1 had a tendency to increase with increasing particle size, paralleling increased concentrations of Fe, Ba and Cu. The two OP metrics were not significantly correlated with one another, suggesting that the glutathione and ascorbate depletion assays respond to different components of the particles. Ascorbate depletion per unit mass did not show the same dependence as for GSH and it is possible that other trace metals (Zn, Ni, V) or organic components which are enriched in the finer particle fractions, or the greater surface area of smaller particles, counter-balance the redox activity of Fe, Ba and Cu in the coarse particles. Further work with longer-term sampling and a larger suite of analytes is advised in order to better elucidate the determinants of oxidative potential, and to fuller explore the contrasts between site types.\ud \u

    Molecular Mechanisms of Large-Conductance Ca 2+

    Get PDF
    Gintonin is a unique lysophosphatidic acid (LPA) receptor ligand found in Panax ginseng. Gintonin induces transient [Ca2+]i through G protein-coupled LPA receptors. Large-conductance Ca2+-activated K+ (BKCa) channels are expressed in blood vessels and neurons and play important roles in blood vessel relaxation and attenuation of neuronal excitability. BKCa channels are activated by transient [Ca2+]i and are regulated by various Ca2+-dependent kinases. We investigated the molecular mechanisms of BKCa channel activation by gintonin. BKCa channels are heterologously expressed in Xenopus oocytes. Gintonin treatment induced BKCa channel activation in oocytes expressing the BKCa channel α subunit in a concentration-dependent manner (EC50 = 0.71 ± 0.08 µg/mL). Gintonin-mediated BKCa channel activation was blocked by a PKC inhibitor, calphostin, and by the calmodulin inhibitor, calmidazolium. Site-directed mutations in BKCa channels targeting CaM kinase II or PKC phosphorylation sites but not PKA phosphorylation sites attenuated gintonin action. Mutations in the Ca2+ bowl and the regulator of K+ conductance (RCK) site also blocked gintonin action. These results indicate that gintonin-mediated BKCa channel activations are achieved through LPA1 receptor-phospholipase C-IP3-Ca2+-PKC-calmodulin-CaM kinase II pathways and calcium binding to the Ca2+ bowl and RCK domain. Gintonin could be a novel contributor against blood vessel constriction and over-excitation of neurons
    • …
    corecore