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Abstract. The formation of secondary organic aerosol (SOA)

from the oxidation of β-pinene via nitrate radicals is investi-

gated in the Georgia Tech Environmental Chamber (GTEC)

facility. Aerosol yields are determined for experiments per-

formed under both dry (relative humidity (RH) < 2 %) and

humid (RH= 50 % and RH= 70 %) conditions. To probe the

effects of peroxy radical (RO2) fate on aerosol formation,

“RO2+NO3 dominant” and “RO2+HO2 dominant” experi-

ments are performed. Gas-phase organic nitrate species (with

molecular weights of 215, 229, 231, and 245 amu, which

likely correspond to molecular formulas of C10H17NO4,

C10H15NO5, C10H17NO5, and C10H15NO6, respectively) are

detected by chemical ionization mass spectrometry (CIMS)

and their formation mechanisms are proposed. The NO+ (at

m/z 30) and NO+2 (at m/z 46) ions contribute about 11 %

to the combined organics and nitrate signals in the typical

aerosol mass spectrum, with the NO+ :NO+2 ratio ranging

from 4.8 to 10.2 in all experiments conducted. The SOA

yields in the “RO2+NO3 dominant” and “RO2+HO2 domi-

nant” experiments are comparable. For a wide range of or-

ganic mass loadings (5.1–216.1 µg m−3), the aerosol mass

yield is calculated to be 27.0–104.1 %. Although humidity

does not appear to affect SOA yields, there is evidence of

particle-phase hydrolysis of organic nitrates, which are esti-

mated to compose 45–74 % of the organic aerosol. The extent

of organic nitrate hydrolysis is significantly lower than that

observed in previous studies on photooxidation of volatile or-

ganic compounds in the presence of NOx . It is estimated that

about 90 and 10 % of the organic nitrates formed from the

β-pinene+NO3 reaction are primary organic nitrates and ter-

tiary organic nitrates, respectively. While the primary organic

nitrates do not appear to hydrolyze, the tertiary organic ni-

trates undergo hydrolysis with a lifetime of 3–4.5 h. Results

from this laboratory chamber study provide the fundamen-

tal data to evaluate the contributions of monoterpene+NO3

reaction to ambient organic aerosol measured in the south-

eastern United States, including the Southern Oxidant and

Aerosol Study (SOAS) and the Southeastern Center for Air

Pollution and Epidemiology (SCAPE) study.

1 Introduction

Owing to their high emissions and high reactivity with

the major atmospheric oxidants (O3, OH, NO3), the oxida-

tion of biogenic volatile organic compounds (BVOCs) emit-

ted by vegetation, such as isoprene (C5H8), monoterpenes

(C10H16), and sesquiterpenes (C15H24), is believed to be

the dominant contributor to global secondary organic aerosol

(SOA) formation (e.g., Kanakidou et al., 2005). While this

is supported by the observation that ambient organic aerosol

is predominantly “modern” and therefore biogenic in origin

(Lewis et al., 2004; Schichtel et al., 2008; Marley et al.,

2009), there exists an apparent contradiction because am-

bient organic aerosol is well correlated with anthropogenic

tracers (de Gouw et al., 2005; Weber et al., 2007). This ap-

parent discrepancy could be reconciled if anthropogenic pol-

lution influences the atmospheric oxidation of BVOCs and

their aerosol formation pathways. The oxidation of BVOCs

by nitrate radicals (NO3), formed from the reaction of ozone

with NO2, provides a direct link between anthropogenic pol-

Published by Copernicus Publications on behalf of the European Geosciences Union.
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lution and the abundance of biogenic carbon in atmospheric

aerosol.

Biogenic hydrocarbons react rapidly with nitrate radicals

(Atkinson and Arey, 2003a) and the SOA yields are generally

higher than in photooxidation and ozonolysis (e.g., Griffin et

al., 1999; Hallquist et al., 1999; Spittler et al., 2006; Ng et

al., 2008; Fry et al., 2009, 2011, 2014; Rollins et al., 2009).

As monoterpene emissions are not entirely light dependent,

they are emitted during the day and at night (Fuentes et al.,

2000; Guenther et al., 2012) and can contribute substantially

to ambient organic aerosol. Monoterpenes have also been

found to make up as much as 28 % of non-methane organic

carbon emissions from biomass burning in both field and

laboratory studies (Akagi et al., 2013; Hatch et al., 2015;

Stockwell et al., 2015). Fires from biomass burning are more

likely to smolder at night and are therefore more likely to

emit monoterpenes, which can then react with nitrate radi-

cals (Akagi et al., 2013). Results from previous field stud-

ies provided evidence of aerosol formation from nitrate rad-

ical oxidation of BVOCs during both daytime and night-

time (McLaren et al., 2004; Iinuma et al., 2007; Fuentes et

al., 2007; Brown et al., 2009, 2013; Rastogi et al., 2011;

Rollins et al., 2012; Rollins et al., 2013). Specifically, many

of these studies found a significant increase in the amount of

monoterpene organic aerosol and oxidation products at night,

which could be attributed to nighttime monoterpene oxida-

tion by nitrate radicals (McLaren et al., 2004; Iinuma et al.,

2007; Rastogi et al., 2011). Results from recent flight mea-

surements in Houston, TX, also showed that organic aerosol

was enhanced in the nocturnal boundary layer at levels in ex-

cess of those attributable to primary emissions, implying a

source of SOA from the BVOCs+NO3 reaction (Brown et

al., 2013).

Global modeling studies showed large variations in the

total SOA burden that can be attributed to the oxidation of

BVOCs by nitrate radicals, ranging from ∼ 5 to 21 % (Hoyle

et al., 2007; Pye et al., 2010). Specifically, Pye et al. (2010)

showed that the inclusion of nitrate radical oxidation reac-

tion doubled the total amount of terpene (monoterpenes and

sesquiterpenes) aerosol, pointing to the significant contribu-

tion of this chemistry to total organic aerosol burden. In these

modeling studies, all aerosol formation from the nitrate rad-

ical oxidation of terpenes was calculated based on the β-

pinene+NO3 SOA yields obtained in Griffin et al. (1999).

A recent modeling study by Russell and Allen (2005) deter-

mined that as much as 20 % of all nighttime SOA is from the

reaction of β-pinene+NO3. Due to the significance of nitrate

radical oxidation pathways in SOA formation, it is important

that the SOA yields for BVOCs+NO3, and especially that of

β-pinene+NO3, are well constrained from fundamental lab-

oratory studies and accurately represented in models.

The majority of the previous laboratory studies of the

BVOCs+NO3 chemistry were performed under dry condi-

tions (Berndt and Boge, 1997a, b; Wängberg et al., 1997;

Griffin et al., 1999; Hallquist et al., 1999; Bonn and Moor-

gat, 2002; Spittler et al., 2006; Ng et al., 2008; Rollins et

al., 2009; Fry et al., 2009, 2011, 2014; Perraud et al., 2010;

Kwan et al., 2012; Jaoui et al., 2013). The effect of relative

humidity on SOA formation, however, could potentially be

important for nighttime (where NO3 radicals dominate) and

early morning chemistry as the ambient relative humidity

(RH) is typically higher at these times. Several recent studies

have investigated the effect of water on SOA formation from

the nitrate radical oxidation pathways but the results are in-

conclusive. For instance, Spittler et al. (2006) found that the

SOA yield is lower at 20 % RH compared to dry conditions,

suggesting that water vapor may alter the gas-phase oxida-

tion mechanism and/or partitioning into the particle phase,

thus shifting the equilibrium partitioning of organic com-

pounds. However, other studies showed that the presence of

water vapor did not affect particle size distributions and SOA

formation (Bonn and Moorgat, 2002; Fry et al., 2009). Thus,

the role of water in SOA formation from nitrate radical oxi-

dation of BVOCs is still unclear.

Another important parameter in SOA formation from

BVOCs+NO3 is the fate of peroxy radicals, which directly

determines the oxidation products, SOA yields, and aerosol

chemical and physical properties (Kroll and Seinfeld, 2008;

Orlando and Tyndall, 2012; Ziemann and Atkinson, 2012).

Previous studies regarding the effects of peroxy radical fates

on SOA formation from BVOCs typically focused on pho-

tooxidation and ozonolysis systems (e.g., Presto et al., 2005;

Kroll et al., 2006; Ng et al., 2007a; Eddingsaas et al., 2012;

Xu et al., 2014) and isoprene+NO3 chemistry (Kwan et al.,

2012; Ng et al., 2008; Nguyen et al., 2014). To our knowl-

edge, the effects of differing peroxy radical branching on

SOA formation from nitrate radical oxidation of monoter-

penes have not been investigated. The relative importance

of different peroxy radical reaction channels concerning

BVOCs+NO3 chemistry in the atmosphere is not well es-

tablished (Brown and Stutz, 2012). While earlier studies by

Kirchner and Stockwell (1996) suggested that RO2+NO3 is

more important in the nighttime atmosphere, a recent study

by Mao et al. (2012) showed that the HO2 mixing ratios are

often on the order of 10 ppt at night. It is therefore possi-

ble that RO2+HO2 pathways could be important pathways

in nighttime oxidation of BVOCs.

Nitrate radical chemistry is expected to produce a substan-

tial amount of organic nitrate compounds, owing to direct

addition of nitrate radical via reaction with a double bond.

Organic nitrates have been observed to form a substantial

portion of atmospheric aerosol in field studies (Brown et al.,

2009; Day et al., 2010; Zaveri et al., 2010; Beaver et al.,

2012; Rollins et al., 2012, 2013; Fry et al., 2013; Brown et

al., 2013; Xu et al., 2015a). Organic nitrate formation has a

significant impact on total NOx lifetime, especially in NOx-

limited regions where NOx lifetime is sensitive to the for-

mation rates of organic nitrates (Browne and Cohen, 2012).

Ambient organic nitrates can be formed through photooxi-

dation of volatile organic compounds (VOCs) in the pres-
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ence of NOx (Chen et al., 1998; Arey et al., 2001; Yu et

al., 2008) and through nitrate radical addition (Spittler et al.,

2006; Perring et al., 2009; Rollins et al., 2009; Kwan et al.,

2012). One removal mechanism for atmospheric organic ni-

trates is hydrolysis in the particle phase (e.g., Sato, 2008;

Szmigielski et al., 2010; Darer et al., 2011; Hu et al., 2011;

Liu et al., 2012; Rindelaub et al., 2015). Modeling studies

have assumed that the majority (75 %) of the organic nitrates

formed in the day are composed of tertiary nitrates based on

results from the photooxidation of α-pinene and β-pinene in

the presence of NOx (Browne et al., 2013). However, the or-

ganic nitrates formed from photooxidation and nitrate radical

oxidation could have different chemical structures (primary,

secondary, and tertiary) and need to be investigated to better

constrain the fates of organic nitrates (e.g., hydrolysis life-

time) in the atmosphere over their entire life cycle (both day

and night).

The goal of this study is to determine the aerosol yields

and characterize the mechanisms and chemical composition

of SOA formation from the β-pinene+NO3 system. Labora-

tory chamber experiments are performed in the dark under

dry and humid conditions. To investigate the effects of per-

oxy radical fates on SOA yields and chemical composition,

the experiments are designed to probe the “RO2+NO3” vs.

“RO2+HO2” reaction pathways. Aerosol yields are obtained

over a wide range of initial β-pinene mixing ratios. Based on

the measured gas-phase and particle-phase oxidation prod-

ucts, mechanisms for SOA formation from β-pinene+NO3

are proposed. Results from this study are used to evaluate the

contributions of nitrate radical oxidation of monoterpenes to

ambient organic aerosol measured in the southeastern United

States (US), including the Southern Oxidant and Aerosol

Study (SOAS) and the Southeastern Center for Air Pollution

and Epidemiology (SCAPE) study.

2 Experimental

2.1 Laboratory chamber experiments

All experiments are performed in the Georgia Tech Envi-

ronmental Chamber (GTEC) facility, which consists of two

12 m3 flexible Teflon (FEP 2 mil) chambers suspended in a

21 ft.× 12 ft. temperature-controlled enclosure. The full op-

erational temperature range of the facility is 4–40± 0.5 ◦C.

A schematic of the chamber facility is shown in Fig. 1. Each

of the chambers has three Teflon manifolds with multiple

sampling ports. Ports allow for the introduction of clean air,

gas-phase reagents, seed aerosol, and for measurements of

RH, temperature, gas-phase composition, and particle-phase

composition. The chambers are surrounded by black lights

(Sylvania, 24922) with output predominately in the ultravi-

olet region between 300 and 400 nm, with a maximum at

354 nm. The black lights are supplemented by natural sun-

shine fluorescent lights (Sylvania, 24477), which have wave-

lengths between 300 and 900 nm. The jNO2
of the chamber

facility is 0.28 min−1 when all of the black lights are turned

on.

Experimental conditions are summarized in Table 1. Prior

to each experiment, the chambers are cleaned by flowing

pure air (generated from AADCO, 747-14) for at least 24 h

at a rate of 40 L min−1, or equivalent to 0.2 chamber vol-

umes per hour. This ensures that the ozone, NO, and NO2

concentrations are less than 1 ppb and the particle concen-

tration is lower than 10 cm−3. Experiments are performed in

the dark under either dry (RH< 2 %) or humid (RH= 50,

70 %) conditions. The air is humidified by passing pure air

through bubblers prior to introduction into the chamber. The

temperature and humidity inside each Teflon chamber are

measured using a hygro-thermometer (Vaisala, HMP110).

Seed aerosol is generated by atomizing an ammonium sul-

fate solution (8 mM) or an ammonium sulfate / sulfuric

acid mixture ([(NH4)2SO4] : [H2SO4]= 3 : 5; molar ratio)

into the chamber. The seed number and mass concen-

trations prior to typical experiments are approximately

2.0× 104 cm−3 and 30 µg m−3. The pH of the (NH4)2SO4

seed and (NH4)2SO4+H2SO4 seed at RH= 50 % is about

4.6 and 2.4, respectively, based on calculations from prior

studies (Gao et al., 2004). Nucleation experiments are per-

formed under both dry and humid (RH= 50, 70 %) condi-

tions to determine organic aerosol density and characterize

vapor wall loss effects on SOA yields. All experiments are

performed at 298 K.

Experiments are designed to probe the effects of peroxy

radical chemistry (RO2+HO2 vs. RO2+NO3) on SOA for-

mation from the reaction of β-pinene with nitrate radicals.

The procedure for chemical injection depends on the desired

fate of the peroxy radicals in the experiments. To enhance the

branching ratio of RO2+HO2 in the chamber experiments,

formaldehyde is first added to the chamber (Nguyen et al.,

2014). Formalin solution (Sigma-Aldrich, 37 % HCHO) is

injected into a glass bulb and clean air is passed over the

solution until it evaporates. After this, seed aerosol, NO2

(Matheson, 500 ppm), and ozone (generated by passing zero

air through a UV radiation cell, Jelight 610, 80 ppm) are in-

jected into the chamber. NO2 and O3 concentrations are cho-

sen ([NO2] : [O3]≈ 4 : 3) to ensure that 99 % of the β-pinene

reacts with nitrate radicals instead of ozone. The NO2 and O3

react to form nitrate radicals and subsequently N2O5 through

the following reactions:

NO2+O3→ NO3+O2, (R1)

NO3+NO2↔ N2O5. (R2)

Formaldehyde then reacts with nitrate radicals to form

HO2 radicals via the following reaction:

HCHO+NO3+O2→ HNO3+CO+HO2. (R3)

Enough formaldehyde (3–22 ppm) is added to the chamber

to ensure that the RO2+HO2 radical branching ratio is an or-

der of magnitude higher than the RO2+RO2 and RO2+NO3

www.atmos-chem-phys.net/15/7497/2015/ Atmos. Chem. Phys., 15, 7497–7522, 2015
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Figure 1. Schematic of the Georgia Tech Environmental Chamber (GTEC) facility.

pathways (Supplement). The chamber content is allowed to

mix for ∼ 30 min, after which a desired amount of β-pinene

is injected into a glass bulb, where it is introduced into the

chamber by passing clean air through the glass bulb. Intro-

duction of β-pinene into the chamber marks the beginning

of the experiment. We refer to this set of experiments as

“RO2+HO2 dominant” experiments.

For “RO2+NO3 dominant” experiments, seed aerosol is

first introduced into the chamber, followed by β-pinene in-

jection. After allowing ∼ 30 min for the β-pinene concen-

tration to stabilize, N2O5 is injected into the chamber. To

generate N2O5, a mixture of NO2 and O3 is pre-reacted in

a flow tube (flow rate= 1.3 L min−1; residence time= 71 s)

before entering the chamber. The N2O5 concentration is es-

timated by modeling the reaction of NO2 and O3 in the flow

tube. For this set of experiments, the introduction of N2O5

marks the beginning of the experiment. We aim for an initial

N2O5 : β-pinene ratio of ∼ 6 : 1. It is noted that the ozone

concentration in the chamber is sufficiently low that at least

99 % of β-pinene reacts with nitrate radicals. N2O5 continu-

ously dissociates to form NO2 and nitrate radicals during the

experiment to re-establish equilibrium as the nitrate radicals

react with β-pinene. The high initial N2O5 and nitrate radi-

cal concentrations relative to β-pinene favor the RO2+NO3

pathway.

For all experiments except “RO2+HO2 dominant” experi-

ments conducted under humid conditions (RH= 50, 70 %),

a Gas Chromatography Flame Ionization Detector (GC-

FID; Agilent 6780A) measures a β-pinene concentration

of zero (below detection limit) within the first scan (scan

time= 11.7 min) after the experiment begins. This suggests

that β-pinene is completely consumed within 11.7 min of

N2O5 injection for the “RO2+NO3 dominant” experiments

and that β-pinene is fully reacted away before being detected

by the GC-FID in the “RO2+HO2 dominant” experiments

under dry conditions. The concentration of β-pinene is calcu-

lated from the mass of the hydrocarbon injected and the vol-

ume of the chamber. The chamber volume is determined to

be approximately 12 m3 by injecting a known volume of NO2

standard (Matheson, 500 ppm) into the chamber and measur-

ing the resulting NO2 concentration inside the chamber.

Ozone and NOx concentrations are monitored with an O3

analyzer (Teledyne T400) and an ultrasensitive chemilumi-

nescence NOx monitor (Teledyne 200EU), respectively. To-

tal aerosol volume and size distributions are measured with

a scanning mobility particle sizer (SMPS; TSI). The SMPS

consists of a differential mobility analyzer (DMA) (TSI

3040) and condensation particle counter (CPC) (TSI 3775).

Bulk particle chemical composition is measured with an

Aerodyne high-resolution time-of-flight aerosol mass spec-

trometer (HR-ToF-AMS). The working principle and opera-

tion of the HR-ToF-AMS are described in detail elsewhere

(DeCarlo et al., 2006). The HR-ToF-AMS provides quantita-

tive measurements of organics, nitrate, sulfate, ammonium,

and chloride. Elemental analysis is performed on the data to

determine elemental composition (e.g., O :C, N :C ratios) of

the bulk aerosol (Canagaratna et al., 2015).

A suite of gas-phase oxidation products and N2O5 are

measured using a quadrupole chemical ionization mass spec-

trometer (CIMS) with I− as the reagent ion, which has high

selectivity towards reactive nitrogen species, peroxides, and

carboxylic acids (Huey, 2007; McNeill et al., 2007; Zhao et

al., 2012). The CIMS uses methyl iodide to produce I− ions

that ionize gas-phase products through association (Slusher

et al., 2004; Zheng et al., 2011). It has been shown that

I− addition to gas-phase molecules provides a molecule–

Atmos. Chem. Phys., 15, 7497–7522, 2015 www.atmos-chem-phys.net/15/7497/2015/
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Table 1. Experimental conditions and aerosol mass yields for all experiments.

Experiment RH (%) Condition Seed 1HCc (ppb) 1HCc(µg m−3) 1Md
o (µg m−3) Mass yield (%)

1 < 2 RO2+NO3 ASa 2.5± 0.2 13.8± 1.3 5.3± 0.41 38.3± 5.5

2 < 2 RO2+NO3 AS 2.5± 0.2 13.8± 1.3 5.4± 0.15 38.7± 4.0

3 < 2 RO2+NO3 AS 7.4± 0.7 41.5± 3.9 25.3± 0.54 61.0± 6.0

4 < 2 RO2+NO3 AS 9.9± 0.9 55.4± 5.2 –e –

5 < 2 RO2+NO3 AS 12.4± 1.2 69.2± 6.5 – –

6 < 2 RO2+NO3 AS 12.4± 1.2 69.2± 6.5 44.9± 0.73 64.9± 6.3

7 < 2 RO2+NO3 AS 14.9± 1.4 83.0± 7.8 – –

8 < 2 RO2+NO3 AS 17.4± 1.6 96.9± 9.1 – –

9 < 2 RO2+NO3 AS 24.8± 2.4 138.4± 13.1 134.6± 1.51 97.2± 9.3

10 < 2 RO2+NO3 AS 24.8± 2.4 138.4± 13.1 114.7± 2.51 82.9± 8.2

11 51 RO2+NO3 AS 2.4± 0.2 13.2± 1.2 7.3± 0.57 55.4± 8.2

12 50 RO2+NO3 AS 2.4± 0.2 13.2± 1.2 6.8± 0.36 51.7± 6.3

13 49 RO2+NO3 AS 7.1± 0.7 39.6± 3.7 23.0± 0.65 57.9± 6.0

14 49 RO2+NO3 AS 9.5± 0.9 52.8± 5.0 34.2± 0.89 64.8± 6.6

15 51 RO2+NO3 AS 9.5± 0.9 52.8± 5.0 33.1± 0.56 62.5± 6.1

16 50 RO2+NO3 AS 11.9± 1.1 66.1± 6.2 43.5± 0.60 65.9± 6.4

17 50 RO2+NO3 AS 11.9± 1.1 66.1± 6.2 42.2± 0.98 63.9± 6.4

18 51 RO2+NO3 AS 14.2± 1.3 79.3± 7.5 60.7± 0.83 76.6± 7.4

19 51 RO2+NO3 AS 16.6± 1.6 92.5± 8.7 68.4± 1.26 73.9± 7.2

20 71 RO2+NO3 AS 11.9± 1.1 66.1± 6.2 50.5± 1.32 76.4± 7.8

21 70 RO2+NO3 AS 11.9± 1.1 66.1± 6.2 50.0± 0.44 75.7± 7.2

22 72 RO2+NO3 AS 23.7± 2.2 132.1± 12.5 125.5± 1.35 95.0± 9.0

23 68 RO2+NO3 AS 23.7± 2.2 132.1± 12.5 132.9± 1.33 100.6± 9.5

24 51 RO2+NO3 AS+SAb 7.1± 0.7 39.6± 3.7 25.5± 0.69 64.4± 6.6

25 50 RO2+NO3 AS+SA 11.9± 1.1 66.1± 6.2 46.4± 1.10 70.4± 6.8

26 51 RO2+NO3 AS+SA 16.6± 1.6 92.5± 8.7 74.4± 1.23 80.5± 7.7

27 < 3 RO2+HO2 AS 7.4± 0.7 41.5± 3.9 27.0 ± 0.54 64.9± 6.4

28 < 3 RO2+HO2 AS 7.4± 0.7 41.5± 3.9 22.9± 0.71 55.0± 5.8

29 < 3 RO2+HO2 AS 12.4± 1.2 69.2± 6.5 49.3± 0.97 71.2± 7.1

30 < 3 RO2+HO2 AS 12.4± 1.2 69.2± 6.5 36.1± 1.17 52.2± 5.6

31 < 2 RO2+HO2 AS 17.4± 1.6 96.9± 9.1 71.2± 2.32 73.4± 7.8

32 < 3 RO2+HO2 AS 37.3± 3.5 207.6± 19.6 216.1± 1.96 104.1± 9.9

33 49 RO2+HO2 AS 35.6± 3.4 198.2± 18.7 147.8± 1.42 74.6± 7.1

34 69 RO2+HO2 AS+SA 2.4± 0.2 13.2± 1.2 5.1± 0.59 38.5± 8.1

35 69 RO2+HO2 AS+SA 4.7± 0.4 26.4± 2.5 16.1± 1.14 61.0± 9.0

36 66 RO2+HO2 AS+SA 7.1± 0.7 39.6± 3.7 30.3± 0.71 76.4± 7.8

37 66 RO2+HO2 AS+SA 11.9± 1.1 66.1± 6.2 47.7± 1.77 72.1± 8.1

38 < 1 RO2+NO3 None 12.4± 1.2 69.2± 6.5 42.3± 0.46 61.1± 5.8

39 50 RO2+NO3 None 11.9± 1.1 66.1± 6.2 44.3± 0.34 67.0± 6.4

40 < 2 RO2+HO2 None 12.4± 1.2 69.2± 6.5 18.7± 0.51 27.0± 2.8

41 66 RO2+HO2 None 11.9± 1.1 66.1± 6.2 28.5± 0.60 43.1± 4.2

42 50 RO2+HO2 None 11.9± 1.1 66.1± 6.2 18.4± 0.34 27.8± 2.7

43 < 2 RO2+HO2 AS∗ 12.4± 1.2 69.2± 6.5 33.6± 0.79 48.5± 4.9

44 68 RO2+HO2 AS+SA∗ 11.9± 1.1 66.1± 6.2 46.6± 0.86 70.6± 7.0

45 66 RO2+HO2 AS+SA∗ 11.9± 1.1 66.1± 6.2 44.5± 0.87 67.3± 6.7

∗ Experiments with seed concentrations greater than the typical seed concentrations for investigating vapor wall loss effects. a (NH4)2SO4 Seed.
b (NH4)2SO4+H2SO4 Seed. c Uncertainties in hydrocarbon concentration are calculated from an 8 % uncertainty in chamber volume and 5 % uncertainty in

hydrocarbon mass. d Uncertainties in aerosol mass loading are calculated from 1 standard deviation of aerosol volume as measured by the SMPS. e “–” denotes

experiments where there is no SMPS data.

iodide adduct that preserves the original species of the com-

pounds being sampled. The gas-phase species are detected

as m/z=MW+ 127. Masses with specific m/z are selected

for detection using a quadrupole mass filter. These species

are then detected by an electron multiplier which amplifies

incident charge through secondary electron emission to pro-

duce a measurable current that scales with gas-phase con-

centration. Due to unavailability of standards for the oxida-
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tion products, the instrument is not calibrated for these com-

pounds and concentrations are not reported. However, the

CIMS data allow for identification and comparison of the

abundance of specific gas-phase oxidation products formed

in different experimental conditions.

2.2 Analysis of particle-phase products

Aerosol samples are collected on Teflon filters (Pall Corp.

R2PL047, 1 µm pore size and 47 mm diameter) during the

SOA experiments (Experiments 9, 10, 22, 23, 32, 33 in Ta-

ble 1) and for a series of blank/control experiments. These

blank experiments are (1) clean chamber (no aerosol) at

RH< 2 %, (2) clean chamber (no aerosol) at RH= 50 %,

(3) clean chamber at RH= 50 % with only N2O5 injected,

and (4) clean chamber at RH< 2 % with only β-pinene in-

jected. All filters collected during the chamber experiments

and controls are stored at a temperature below −20 ◦C be-

fore sample extraction and preparation for chromatographic

analysis.

Each filter is extracted twice by sonication (Branson

3510) for 15 min in 2.50 mL acetonitrile (Fisher Optima,

LC-MS grade). After combining both aliquots, each ex-

tracted sample is blown dry under a gentle stream of ni-

trogen (Scott-Gross, UHP), reconstituted with 1000 µL ace-

tonitrile, and transferred to a chromatographic vial. Sam-

ples are analyzed with an Accela (Thermo Fisher Scien-

tific) ultra-high-performance liquid chromatographer (UH-

PLC) equipped with a 1250 quaternary delivery pump, a pho-

todiode array detector (PDA) with a 5 cm LightPipe flow cell,

and a mass spectrometry (MS) detector (Thermo MSQ Plus).

Samples are injected (50 µL) with an Accela autosampler into

the reversed-phase chromatographic column (Hypersil gold

C18, 50× 2.1 mm, 1.9 µm particle size, Thermo Scientific).

Excalibur software is used to control the UHPLC-PDA-MS

system. Chromatographic separation at a constant flow rate

of 800 µL min−1 from 0 to 1 min is isocratic with 90 % (A)

0.10 mM formic acid (Fisher Optima, LC-MS grade) in ultra-

pure water (18.2 M� cm Purelab Flex, Veolia) and 10 % (B)

0.10 mM formic acid in acetonitrile. Gradient elution from

1 to 8 min reaches a 10 : 90 ratio of solvents A :B and re-

mains isocratic from 8 to 10 min. Selected chromatograms

utilize 0.4–1.0 mM acetic acid (Acros, glacial ACS, 100.0 %

by assay) instead of 0.1 mM formic acid in the mobile phase.

After the PDA registered the UV–visible spectra from 190 to

700 nm, the flow is interfaced with an electrospray ionization

(ESI) probe (1.9 kV needle voltage, 350 ◦C probe tempera-

ture, and 70 psi N2 nebulizing gas) to the MS detector set to

detect negative ions in the range of m/z 50 to 650 amu. Se-

lected samples are analyzed under variable cone voltage (10–

100 V) to register the fragmentation pattern of the peaks and

gain structural information of the products. The extraction

method shows an efficient 98.8 % recovery, when 98.6 µg of

4-nitrophenol (Acros, 98.0 %) are spiked onto a blank filter.
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Figure 2. Time series of the gas-phase organic nitrate species mea-

sured by the CIMS and the corresponding aerosol formation mea-

sured by HR-ToF-AMS (organics mass) and SMPS (aerosol vol-

ume) (Experiment 30 in Table 1). The gas-phase species atm/z 356

decreases over the course of the experiment while the species at

m/z 372 increases steadily.

3 Results

Gas-phase oxidation and aerosol growth is observed to

be a rapid process in the β-pinene+NO3 reaction. Peak

aerosol growth is typically observed within 10–15 min for

all reaction conditions except in humid (RH= 50, 70 %)

“RO2+HO2 dominant” experiments, where aerosol reaches

peak growth in about 30 min. Figure S1 in the Supplement

shows a typical mass spectrum for the CIMS data. Specifi-

cally, the major gas-phase products are detected at m/z 342,

356, 358, and 372 (which correspond to MW= 215, 229,

231, 245 amu, respectively). These compounds likely cor-

respond to organic nitrate species with molecular as-

signments of C10H17NO4, C10H15NO5, C10H17NO5, and

C10H15NO6, respectively. Figure 2 shows the time series of

these species and the aerosol growth over the course of a typi-

cal “RO2+HO2 dominant” experiment in dry conditions. The

products at m/z 356 and 358 (MW= 229 and 231 amu) de-

crease over the course of the experiment. While this can be

attributed to vapor phase wall loss, it is also possible that

these gas-phase compounds undergo further reaction. This is

further supported by the increase in the species at m/z 372

(MW= 245 amu). The proposed gas-phase oxidation mech-

anism and formation of compounds at m/z 372 from com-

pounds at m/z 356 will be discussed further in Sect. 4.1.

Although all the above gas-phase species are observed un-

der all reaction conditions, m/z 358 (MW= 231 amu) is sig-

nificantly higher in the “RO2+HO2 dominant” experiments

than in the “RO2+NO3 dominant” experiments (Fig. S2),

which is indicative of differences in the gas-phase chemistry

depending on the RO2 fate. Under both “RO2+HO2 dom-
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Figure 3. Aerosol mass yield as a function of organic mass load-

ing for the β-pinene+NO3 reaction under “RO2+NO3 dominant”

conditions. The aerosol mass yields obtained in this study are com-

pared to those measured in previous chamber studies by Griffin et

al. (1999) and Fry et al. (2009). The aerosol mass yields obtained

in this study are fitted using the two-product model proposed pre-

viously by Odum et al. (1996). The yield parameters obtained in

this study and those from Griffin et al. (1999) are shown in Table 2.

In order to better compare the aerosol mass yields obtained in this

study to that by Griffin et al. (1999), measurements by Griffin et

al. (1999) are adjusted to a temperature of 298 K and density of

1.41 g cm−3. The x axis error bars represent 1 standard deviation

of volume measured by SMPS at peak growth. The y axis error

bars represent uncertainty in yield calculated by an 8 % uncertainty

in chamber volume, 5 % uncertainty in hydrocarbon injection, and

1 standard deviation of the aerosol volume measured by SMPS at

peak growth.

inant” and “RO2+NO3 dominant” conditions, experiments

conducted under dry conditions have significantly higher

N2O5 concentrations than humid conditions (by at least a fac-

tor of 2) as measured by CIMS. This is likely due to N2O5 up-

take (loss) on the wet chamber surfaces and/or seed aerosol.

The relative abundance of N2O5 under different experimen-

tal conditions is important in terms of β-pinene reaction rate

and aging of aerosol, which are discussed in Sect. 4.2.2 and

4.4, respectively.

All SOA growth data are corrected for particle wall loss by

applying size-dependent coefficients determined from wall

loss experiments at GTEC following the methodology de-

scribed in Keywood et al. (2004). The size-dependent par-

ticle wall loss rates calculated for both chambers at GTEC

are shown in Fig. S3. Figures 3 and 4 show the SOA

yields for “RO2+NO3 dominant” and “RO2+HO2 domi-

nant” experiments over a wide range of aerosol mass load-

ings (1Mo = 5.1–216.1 µg m−3). The SOA yields lie in the

range of 27.0–104.1 % over the conditions studied. Aerosol

mass yield (Y ) is defined as the aerosol mass concentra-
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Figure 4. Aerosol mass yield as a function of organic mass loading

for the β-pinene+NO3 reaction under “RO2+HO2 dominant” con-

ditions. These aerosol mass yields are compared to the yield curve

(solid line) for the NO3+β-pinene reaction under “RO2+NO3

dominant” conditions. The x axis error bars represent 1 standard

deviation of volume measured by SMPS at peak growth. The y axis

error bars represent uncertainty in yield calculated by an 8 % uncer-

tainty in chamber volume, 5 % uncertainty in hydrocarbon injection,

and 1 standard deviation of the aerosol volume measured by SMPS

at peak growth.

tion produced (1Mo) divided by the mass concentration

of hydrocarbon reacted (1HC), Y =1Mo/1HC (Odum et

al., 1996; Bowman et al., 1997; Odum et al., 1997a, b).

For all experiments, aerosol mass concentration is obtained

from the SMPS aerosol volume concentration (averaged over

30 min at peak growth) and the calculated aerosol density.

The aerosol density is calculated from the SMPS volume

distribution and the HR-ToF-AMS mass distribution in the

nucleation experiments (Bahreini et al., 2005). The densities

of the organic aerosol generated in nucleation experiments

under dry and humid (RH= 50, 70 %) conditions are deter-

mined to be 1.41 g cm−3 and 1.45 g cm−3 for the “RO2+NO3

dominant” experiments and 1.54 and 1.61 g cm−3 for the

“RO2+HO2 dominant” experiments.

It can be seen from Fig. 3 that the aerosol yields in the

“RO2+NO3 dominant” experiments under dry vs. humid

conditions in the presence of (NH4)2SO4 seed are simi-

lar. The presence of the more acidic (NH4)2SO4+H2SO4

seed does not appear to enhance SOA production in the

“RO2+NO3 dominant” experiments (Fig. S4). Therefore,

we fit the Odum two-product model (Odum et al., 1996,

1997a) to all of our experimental data shown in Fig. 3 to

obtain a single yield curve. The SOA yield parameters are

given in Table 2. Shown in Fig. 4 are the aerosol yields

from “RO2+HO2 dominant” experiments under dry vs. hu-

mid (RH= 70 %) conditions. The SOA yield curve (solid

www.atmos-chem-phys.net/15/7497/2015/ Atmos. Chem. Phys., 15, 7497–7522, 2015
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Table 2. Fit parameters for two-product model proposed by Odum

et al. (1996).

α1 K1 α2 K2

β-pinene+NO3 (this study) 1.187 0.004546 0.496 0.880

Griffin et al. (1999) 1.464 0.0158

red line) for the “RO2+NO3 dominant” experiments is also

shown for comparison.

For comparison, SOA yields from previous β-

pinene+NO3 laboratory chamber studies (Griffin et al.,

1999; Fry et al., 2009) are also shown in Fig. 3. Without

adding HCHO as an additional HO2 source, it is likely

that the experiments in Griffin et al. (1999) and Fry et

al. (2009) are more similar to our “RO2+NO3 dominant”

experiments. Specifically, Fry et al. (2009) noted that the

β-pinene+NO3 reaction likely does not produce significant

concentrations of HO2 radicals and therefore has a low

HO2 /RO2 ratio. As Griffin et al. (1999) assumed an aerosol

density of 1.0 g cm−3, the experimental data from Griffin

et al. (1999) shown in Fig. 3 have been multiplied by the

density calculated in our study for “RO2+NO3 dominant”

experiments under dry conditions (i.e., 1.41 g cm−3). The

data shown in Fig. 3 from Fry et al. (2009) have also

incorporated a particle density of 1.6 g cm−3 calculated

in their study. In addition to correcting for density, the

equilibrium partitioning coefficient, K, from Griffin et

al. (1999) has been adjusted from 306 to 298 K using an

enthalpy of vaporization of 42 kJ mol−1 for comparison

to results from our study (Chung and Seinfeld, 2002). It

is noted that the SOA yields obtained in the current study

are higher than those in Griffin et al. (1999) and Fry et

al. (2009), particularly at lower aerosol mass loadings that

are more relevant to ambient environments. These results are

discussed in more detail in Sect. 4.2.

Bulk aerosol composition from the experiments is charac-

terized by the HR-ToF-AMS. A typical high-resolution mass

spectrum for aerosol formed under dry conditions where

the RO2+NO3 pathway is dominant (Experiment 5 in Ta-

ble 1) is shown in Fig. 5. A key feature of the mass spec-

trum is the high intensity of the nitrate ions at NO+ and

NO+2 , which make up about 11 % of the combined organ-

ics and nitrate signals. The majority (> 90 %) of the nitro-

gen atoms are detected at these two ions with the remain-

ing nitrogen-containing ions detected at higher masses as

CxHyOzN. The mass spectra for the aerosol generated in

the “RO2+HO2 dominant” and “RO2+NO3 dominant” ex-

periments are similar. One notable difference between the

“RO2+HO2 dominant” and “RO2+NO3 dominant” experi-

ments is the NO+ :NO+2 ratio for the organic nitrates (R-

ON), which ranges from 4.8 to 10.2 in all experiments. While

the NO+ :NO+2 ratio averages 6.5 for “RO2+NO3 dominant”

experiments, it averages 8.6 for “RO2+HO2 dominant” ex-
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Figure 5. High-resolution aerosol mass spectrum of the SOA

formed from the β-pinene+NO3 reaction under dry, ammonium

sulfate seed, and “RO2+NO3 dominant” conditions (Experiment 5

in Table 1). The mass spectrum is colored by the ion type to indicate

the contribution of each ion type to the mass spectrum. Only ions up

to m/z 160 are shown as the signals beyond m/z 160 are minimal.

Ions that contribute significantly to the total signal are also labeled.

periments. Since the values of R-ON may depend on the

instrument, we normalize the R-ON to the NO+ :NO+2 ra-

tio of ammonium nitrate (R-AN), which is expected to be

a better metric (Farmer et al., 2010). In our study, multiple

measurements of R-AN are obtained from the ionization ef-

ficiency (IE) calibrations and the average value is 1.8 (range

of 1.2–2.7). Applying the R-AN that is measured closest in

time to each chamber experiment, we calculate the average

R-ON :R-AN ratio to be 3.2 for “RO2+NO3 dominant” ex-

periments and 4.8 for “RO2+HO2 dominant” experiments.

For both types of experiments, there is a negligible differ-

ence in the mass spectrum of the aerosol produced in dry or

high humidity (RH= 50, 70 %) conditions. In Fig. 5, nitrate

and organic ions are each assigned a different color to in-

dicate an individual AMS HR ion family. There are a few

notable ions in the aerosol mass spectrum. The signals at

m/z 67 (C5H+7 ) and m/z 91 (C7H+7 ), while not significant

in the high-resolution mass spectra of several biogenic SOA

systems (Ng et al., 2008; Chhabra et al., 2010), are relatively

large for β-pinene+NO3 SOA. These ions also make up a

larger fraction of the HR-ToF-AMS signal for SOA formed

from the ozonolysis of β-caryophyllene (Chen et al., 2015)

when compared to other biogenic SOA. Therefore, m/z 67

(C5H+7 ) andm/z 91 (C7H+7 ) could potentially serve as useful

indicators for SOA formed from monoterpene/sesquiterpene

oxidation in ambient aerosol mass spectra. However, more

studies of SOA formed from the oxidation of biogenic VOCs

are necessary to apportion ambient organic aerosol (OA)

based on these fragments.

Figure 6 shows the time evolution of the major organic

families relative to sulfate measured by the HR-ToF-AMS

for a typical dry “RO2+NO3 dominant” experiment (Exper-

iment 5 in Table 1). Sulfate is used to normalize the de-

cay of the organic families because it is non-volatile and

Atmos. Chem. Phys., 15, 7497–7522, 2015 www.atmos-chem-phys.net/15/7497/2015/
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Figure 6. Time series of mass concentrations of the major organic

families (normalized to the sulfate mass concentration) as measured

by the HR-ToF-AMS at RH< 2 % under “RO2+NO3 dominant”

conditions (Experiment 5 in Table 1). The least oxidized organic

species (i.e., CH Family) decreases rapidly at the start of the exper-

iment and has the largest decrease among the three major organic

families.

any decrease in sulfate is reflective of particle wall loss and

changes in aerosol collection efficiency (CE) in the HR-ToF-

AMS (Henry and Donahue, 2012). Any change of each or-

ganic family relative to sulfate is therefore interpreted as

a change in organic mass unrelated to particle wall loss or

CE. Non-oxidized fragments (CH Family in green) decrease

more rapidly relative to sulfate than the more oxidized frag-

ments (CHO1 Family in purple; CHOgt1 (fragments with

greater than 1 oxygen atom) Family in pink). The change

in mass for each organic family is determined over a 2.5 h

period following peak aerosol growth (at t ∼ 15 min) in each

“RO2+NO3 dominant” experiment (dry and humid). We find

that the CHOgt1 Family increases by 4 % in dry experiments

and remains relatively constant in humid experiments. This

is consistent with a larger extent of aerosol aging in the dry

experiments and is further discussed in Sect. 4.4.

Figure 7 shows the time evolution of HR-ToF-AMS

nitrate-to-organics ratio in the “RO2+NO3 dominant” ex-

periments at RH= 50 % normalized by that in the corre-

sponding dry experiments with the same initial hydrocarbon

concentration. For simplicity, we refer to this ratio as (ni-

trate : org)norm. Normalizing the nitrate-to-organics ratio ob-

tained from the humid experiments to the dry experiments

allows for determining the extent of possible organic nitrate

hydrolysis under humid conditions. Since only the relative

change in the (nitrate : org)norm ratio is important for compar-

ison purposes, the maximum (nitrate : org)norm measurement

for each experiment is set to be unity. Nitrate mass is de-

fined here as the sum of the mass of the NO+ and NO+2 ions.

This does not account for the CxHyOzN fragments, but these
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Figure 7. The AMS nitrate : org ratio of humid (RH= 50 %) exper-

iments normalized to the corresponding dry experiments with same

initial β-pinene mixing ratio, 5 min averaged, for “RO2+NO3 dom-

inant” experiments. This ratio is referred to as (nitrate : org)norm in

the main text. For comparison purposes, all data are normalized to

the highest (nitrate : org)norm ratio.

fragments only account for less than 10 % (by mass) of the

nitrate functional groups detected by HR-ToF-AMS. As the

experiment progresses, the (nitrate : org)norm ratio decreases

and stabilizes at a value of about 0.9, indicating that there

is no further decrease in the mass of nitrate relative to the

mass of organics beyond this point. From our particle wall

loss experiments, we establish that the particles are lost to

the chamber wall with comparable rates under dry and hu-

mid conditions, suggesting that the observed decrease in the

(nitrate : org)norm ratio is not a result of differing particle wall

loss in dry and humid experiments. Instead, the decrease un-

der humid conditions is attributed to hydrolysis of organic

nitrate compounds in the particle phase. This is further dis-

cussed in Sect. 4.3.2.

4 Discussion

4.1 Proposed mechanisms

Figure 8 shows the proposed scheme for the generation of

species observed by CIMS and UHPLC-PDA-MS analyses

from the oxidation of β-pinene with nitrate radicals. The oxi-

dation process starts with Reaction (R1) for the sterically pre-

ferred addition of nitrate radical to the primary carbon (C1)

in the double bond of β-pinene (Wayne et al., 1991). The ter-

tiary alkyl radical formed on C2 can undergo (1) addition of

O2 to form a peroxy radical via Reaction (R2) (Atkinson and

Arey, 2003b), (2) a 1,5-CH3 shift indicated by Reaction (R3)

(Miller, 2003) and, (3) rearrangement via Reaction (R4)

(Stolle et al., 2009; Schröder et al., 2010). Reaction (R4)
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Figure 8. Generation of gas-phase species with molecular weights (MW) of 215, 229, and 231 amu detected by CIMS (red font), aerosol

species with MW= 245 amu in filters analyzed by UHPLC-MS (blue font). Reaction numbers are given in green font and reaction with

generic radical Q
q
(e.g., NO3, RO2) is used to symbolize any species abstracting hydrogen atoms. Reactions which can be accomplished by

any of the radicals present (RO2, HO2, NO3, etc.) are symbolized by reaction with generic radical L
q
. Reactions enhanced in the RO2+HO2

dominant pathway are highlighted in purple.

is thought to be a favorable pathway because it relieves the

ring strain from the cyclobutane while generating a tertiary

alkyl radical with a new reactive double bond. In the pres-

ence of oxygen, O2 combines with the alkyl radical to make

a peroxy radical, which is then converted to an alkoxy radi-

cal via Reaction (R5) (denoted as R5O here) (Atkinson and

Arey, 2003b; Vereecken and Peeters, 2012). Reactions which

can be accomplished by any of the radicals present (RO2,

HO2, NO3, etc.) are symbolized by reaction with generic

radical L
q
, while hydrogen abstractions are symbolized by

reaction with generic radical Q
q
(e.g., NO3, RO2). R5O can

undergo intramolecular addition to the less substituted C7 of

the newly formed double bond via Reaction (R6), generat-

ing a cyclic ether alkyl radical (Vereecken and Peeters, 2004,

2012). Alternatively, R5O can undergo hydrogen abstraction

from another species via Reaction (R7) to form a hydrox-

ynitrate of MW= 215 amu (R7OH), a gas-phase species de-

tected by CIMS. The cyclic ether alkyl radical generated by

Reaction (R6) combines with O2 to make peroxy radical U

by Reaction (R8). The fate of radical U is to produce a cyclic

ether hydroxynitrate with MW= 231 amu via Reaction (R9)

(Russell, 1957; Atkinson and Arey, 2003b). A compound

with the same molecular weight as this species is detected

by CIMS.
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The alkyl radical formed in Reaction (R1) can also un-

dergo a 1,5-CH3 shift as indicated by Reaction (R3), which

forms a tertiary alkyl radical that then combines with O2 by

Reaction (R10). Reaction (R10) produces a hydroxynitrate

(R10OH) with MW= 215 amu, an isomer that could also

correspond to the species observed by CIMS. Further func-

tionalization of R10OH continues after hydrogen abstraction

by Reaction (R11), which bond strength calculations pre-

dict occurs preferentially at the C3 position (Vereecken and

Peeters, 2012). The resulting secondary alkyl radical from

Reaction (R11) reacts with O2 to form peroxy radical S via

Reaction (R12). The reaction S + L
q
forms either a hydrox-

ycarbonyl nitrate with MW= 229 amu by Reaction (R13), or

a dihydroxynitrate with MW= 231 amu by Reaction (R14)

(Russell, 1957; Atkinson and Arey, 2003b). Both are gas-

phase species detected by CIMS.

The peroxy radical formed in Reaction (R2) can be con-

verted to a hydroperoxide with MW= 231 amu (observed in

CIMS) by reaction with an HO2 radical (R15). Since Reac-

tion (R15) is only associated with the RO2+HO2 channel,

the signal corresponding to the species with MW= 231 amu

is expected be higher in the “RO2+HO2 dominant” exper-

iments. Figure S2 shows the CIMS signal at m/z= 358

(MW= 231 amu) normalized to Br2 sensitivity for each

type of experiment (“RO2+NO3 dominant” and “RO2+HO2

dominant”; dry and humid conditions). The higher signal in

the “RO2+HO2 dominant” experiments supports the forma-

tion of more ROOH species in the gas phase under this reac-

tion condition.

The peroxy radical formed from Reaction (R2) can also be

converted into an alkoxy radical, R16O, via Reaction (R16).

Hydrogen abstraction by the alkoxy radical R16O can form

a third hydroxynitrate isomer with MW= 215 amu by Re-

action (R17). Alternatively, R16O can undergo a 1,5-H shift

from a −CH3 group by Reaction (R18) to form an alkyl

radical at one of the terminal carbons (Carter et al., 1976;

Eberhard et al., 1995; Atkinson, 1997; Dibble, 2001). The

alkyl radical then reacts with O2 to form a peroxy radical

and subsequently forms an aldehyde with MW= 229 amu

by the overall Reaction (R19) (Russell, 1957; Atkinson and

Arey, 2003b). The aldehydic hydrogen is especially suscep-

tible to undergoing hydrogen abstraction (Miller, 2003), fol-

lowed by O2 addition to form a peroxy acid radical, and fi-

nal conversion to a carboxylic acid (Russell, 1957; Atkinson

and Arey, 2003b). R20COOH with MW= 245 amu is pro-

duced by Reaction (R20), a species registered as an anion by

UHPLC-MS at m/z 244 (MW= 245 amu) (Fig. S5). CIMS

data also support the pathways via Reaction (R20) (Fig. 2).

The Br2-normalized CIMS signal for species at m/z 356

(MW= 229 amu) decreases with a subsequent increase in

species at m/z 372 (MW= 245 amu) in the gas phase over

the course of the experiment. Due to the lower vapor pres-

sure of carboxylic acid species compared to carbonyl species

(Pankow and Asher, 2008), the majority of carboxylic acid

formed from this channel is expected to partition into the

particle phase. In addition to Reaction (R20), R20COOH can

also be formed through a more direct route by addition of

O2 to the alkyl radical product and then subsequent reaction

of the peroxy radical with HO2 via the sequence of Reac-

tions (R18)+ (R21)+ (R22) (Ziemann and Atkinson, 2012).

The hydroxynitrate formed by Reaction (R17) can also un-

dergo hydrogen abstraction at the C3 position, as indicated

by Reaction (R23). (Vereecken and Peeters, 2012). Reac-

tion (R24) shows how O2 addition to the resulting secondary

alkyl radical gives peroxy radical T, which can either re-

act with L
q
to form a dihydroxynitrate with MW= 231 amu

via Reaction (R25) or form a hydroxycarbonyl nitrate with

MW= 229 amu via Reaction (R26) (Russell, 1957; Atkinson

and Arey, 2003b). In the absence of hydrogen atoms in the C3

position, hydrogen abstraction occurs from C4 of the hydrox-

ycarbonyl nitrate species via Reaction (R27) (Vereecken and

Peeters, 2012), which then forms a peroxy radical V by Reac-

tion (R28) (Atkinson and Arey, 2003b). Reaction (R29), V+

L
q
, yields a dihydroxycarbonyl nitrate with MW= 245 amu

(Russell, 1957; Atkinson and Arey, 2003b). This dihydrox-

ycarbonyl nitrate is not expected to be the species appear-

ing in the UHPLC-MS chromatogram (Fig. S5) at m/z 244

(MW= 245 amu) because it lacks a −COOH group and

likely has a higher vapor pressure than the carboxylic acid

species with MW= 245 amu. Instead, it is likely that the di-

hydroxycarbonyl nitrate is the species observed by CIMS

at m/z 372 (MW= 245 amu). A third possible isomer (not

shown in Fig. 8) with MW= 245 amu and containing a non-

carboxylic C=O group, could be similarly formed from the

product of Reaction (R13). Likewise, other isomers to those

generated after Reaction (R26) can be formed from each pos-

sible structure with MW= 229 amu, providing a wide array

of precursors to form heavier MW products. The confirma-

tion that several isomers with MW= 245 amu are present in

the filter extracts is revealed from the extracted ion chromato-

graph (EIC), which shows closely eluting peaks at m/z 244

(MW= 245 amu) when substituting formic acid for acetic

acid (Li et al., 2011) as the modifier in the mobile phase

(Fig. S5).

4.2 Aerosol yields

4.2.1 SOA yields over a wide range of organic mass

loadings

The SOA yields obtained from this study are shown in Figs. 3

and 4. In recent years, it has been suggested that the loss

of organic vapors to the chamber wall could affect SOA

yields (Matsunaga and Ziemann, 2010; Loza et al., 2010; Yeh

and Ziemann, 2014; Zhang et al., 2014, 2015). Specifically,

Zhang et al. (2014) demonstrated that vapor wall loss could

lead to an underestimation of SOA yields by as much as a

factor of 4. To evaluate the potential effect of organic vapor

wall loss on SOA yields in our study, experiments without

seed are carried out at different conditions (dry and humid
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(RH= 50, 70 %); “RO2+NO3 dominant” and “RO2+HO2

dominant” conditions). The yields from the nucleation ex-

periments are reported in Fig. S9 along with the yield curve

obtained from seeded experiments. The similar yields for

nucleation/seeded “RO2+NO3 dominant” experiments (dry

and humid) in our study suggest that vapor wall loss has a

negligible effect on aerosol yields in these experiments. It is

likely that rapid reaction of β-pinene with nitrate radicals in

this study mitigates the effect of organic vapor wall loss on

SOA yields. Based on the rapid SOA growth (peak growth

typically achieved within 10–15 min) for these experiments,

it is estimated that the effective reaction rate of β-pinene in

our experiments is an order of magnitude higher than the

rates reported in Zhang et al. (2014). Although the aerosol

mass yields for the “RO2+HO2 dominant” nucleation exper-

iments are lower than the corresponding seeded experiments,

further increase in the seed concentration does not have a sig-

nificant effect on yield. Zhang et al. (2014) determined that if

vapor phase wall loss is significant in chamber experiments,

the addition of more seed particles will lead to an increase in

SOA yield. Therefore, it is likely vapor phase wall loss is also

negligible in our seeded “RO2+HO2 dominant” experiments.

It is unclear at this time why nucleation experiments have

lower SOA yield only for the “RO2+HO2 dominant” exper-

iments. One possibility is that the chamber wall uptake of

ROOH species (which is likely higher in “RO2+HO2 dom-

inant” experiments as measured by CIMS; Fig. 2) is more

rapid than other gas-phase species.

A comparison of aerosol yields obtained for the oxida-

tion of β-pinene with nitrate radicals is also shown in Fig. 3.

Griffin et al. (1999) performed the first comprehensive study

of SOA formation from nitrate radical oxidation of BVOCs.

The aerosol yield curve reported for β-pinene+NO3 by Grif-

fin et al. (1999) is shown next to our yield curve in Fig. 3. The

yield curve in Griffin et al. (1999) was generated from cham-

ber experiments with 1Mo > 45 µg m−3 (range of 1Mo =

45–660 µg m−3) and extrapolated down to lower loadings.

The yield curve generated in the current study, however, in-

cludes measurements at mass loadings< 10 µg m−3 and does

not require any extrapolation beyond the bounds of the data

to include lower, atmospherically relevant aerosol loadings.

As shown in Fig. 3, while the SOA yields from this study are

consistent with Griffin et al. (1999) for 1Mo > 45 µg m−3,

the yields from this study are as much as a factor of 4 higher

than those reported by Griffin et al. (1999) at lower mass

loadings.

Instances where the measured yields at low mass loading

do not match those extrapolated from higher loadings have

been observed for α-pinene ozonolysis (Presto and Don-

ahue, 2006). We attribute this result to limitations of the

two-product model, which bins all compounds into only two

semi-volatile products of differing vapor pressures, to cover

the entire spectrum of volatilities for all chemical products.

At higher mass loadings, semi-volatile and volatile com-

pounds can condense onto the particle phase and can po-

Table 3. Coefficients for the volatility basis set proposed by Don-

ahue et al. (2006).

Saturation vapor pressure, C∗ (µg m−3)

0.1 1 10 100

β-pinene+NO3 (this study) 0.373 0.033 0.000 0.941

Griffin et al. (1999) 0.000 0.000 0.301 1.204

tentially make up the majority of the aerosol. When a two-

product yield curve is fit to high mass loadings only, the

parameters are likely to be biased by the semi-volatile and

high volatility products. Therefore, a yield curve fit using

data from only high mass loadings will not account for the

low-volatility products, which might be the minority prod-

ucts at high organic mass loadings. The two-product fit using

high mass loadings therefore cannot be used to predict yields

at low mass loadings, where the SOA is mostly comprised

of low-volatility products. Since the yield curve generated as

part of this study spans a wide range of organic mass load-

ings, the fitting parameters account for both the low-volatility

products and the higher volatility products.

Fitting yield data to the volatility basis set described in

Donahue et al. (2006) illustrates how higher volatility bins

(products) are favored at higher aerosol mass loadings. The

fit coefficients for the volatility basis set are shown in Table 3

for the aerosol yields of β-pinene+NO3 from this study and

that of Griffin et al. (1999). It is noted that the data from Grif-

fin et al. (1999) have been adjusted to a temperature of 298

K and density of 1.41 g cm−3 for comparison to results from

our study. As seen in Table 3, the stoichiometric coefficients

for the fit of Griffin et al. (1999) are weighted towards higher

volatility products while the coefficients fit to the data col-

lected in this study are distributed among lower and higher

volatility products.

Fry et al. (2009) conducted a pair of β-pinene+NO3

chamber experiments under dry and humid (RH= 60 %)

conditions. Their results are also shown in Fig. 3. The yields

from Fry et al. (2009) are about 20 % lower than the cur-

rent study. A more recent study by Fry et al. (2014) re-

ported aerosol mass yields in the range of 33–44 % for

the β-pinene+NO3 system at an organic mass loading of

10 µg m−3 in a continuous flow chamber under dry condi-

tions. This is approximately 10–30 % lower than the yield

reported at a similar mass loading in this study. While vari-

ous experimental conditions can contribute to the difference

in aerosol mass yields, we note that the aerosol formation

rate in Fry et al. (2009, 2014) is slower than this study,

which is likely caused by lower oxidant concentrations in

Fry et al. (2009, 2014) compared to this study. Slower re-

action times could allow more time for the gas-phase species

to partition onto the chamber walls and reduce the amount

that partitions onto aerosol (Ng et al., 2007b; Zhang et al.,

2014). Thus, organic vapor wall loss might play a role in
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the lower yields observed in Fry et al. (2009, 2014). There

is a substantial difference between our β-pinene+NO3 SOA

yield and that from Hallquist et al. (1999), which reported an

aerosol mass yield of 10 % for a mass loading of 4 µg m−3.

A possible explanation for this is that the mass of β-pinene

reacted was not directly measured in Hallquist et al. (1999),

instead, it was assumed that the concentration of β-pinene

reacted was equivalent to the concentration of N2O5 reacted.

If there were other loss processes for N2O5 in the experi-

ments conducted by Hallquist et al. (1999), the yield reported

in their study could be substantially lower than the actual

aerosol yield.

4.2.2 Effects of RH and acidity on SOA yields

For the “RO2+NO3 dominant” experiments, the yields be-

tween experiments conducted at dry conditions with ammo-

nium sulfate seed are similar to experiments conducted un-

der high humidity (RH= 50 % and RH= 70 %) (Fig. 3). Our

results indicate that the relative humidity does not have ap-

preciable effects on the aerosol mass yield. These results are

consistent with previous humidity effects studies on photoox-

idation (Nguyen et al., 2011) and nitrate radical chemistry

(Bonn and Moorgat, 2002; Fry et al., 2009). However, these

results are inconsistent to the study performed by Spittler et

al. (2006), where lower SOA yields were obtained for the α-

pinene+NO3 system under humid conditions (RH= 20 %).

Spittler et al. (2006) proposed that either the presence of wa-

ter vapor altered the gas-phase chemistry or that the aerosol

water on seed particles prevented gas-phase partitioning.

These do not seem to be the case in our study. Similar gas-

phase oxidation products are detected by CIMS under both

dry and humid conditions and the organics size distribution

measured by HR-ToF-AMS overlaps that of the seed aerosol,

indicating that the oxidation products are condensing onto

the seed particles.

The presence of aerosol water can potentially affect SOA

formation through hydrolysis of organic nitrates. It has been

observed in previous studies that organic nitrates in aque-

ous filter extract can undergo hydrolysis to form alcohols

and nitric acid (Sato, 2008). The change from nitrate to hy-

droxyl functional groups could affect gas-particle partition-

ing and aerosol yields if the organic nitrates and alcohols

have different vapor pressures. However, previous studies

have shown that hydroxyl groups lower the vapor pressure

of an organic compound to the same extent as organic ni-

trate groups (Pankow and Asher, 2008). In this study, hy-

drolysis does not appear to be a major reaction pathway for

β-pinene+NO3 SOA under humid conditions. As shown in

Sect. 4.4, only < 10 % of OA undergoes hydrolysis. Thus,

even if there is a difference in the vapor pressures between

organic nitrates and their hydrolysis products, it is unlikely

that this would affect aerosol yields in our case.

Aerosol water can also enhance SOA yields by providing a

medium for water-soluble species (e.g., glyoxal) to dissolve

into the particulate aqueous phase (Ervens et al., 2011). Ni-

trate radical addition is predicted to add predominantly to

a double bond instead of cleaving carbon to carbon bonds

(Wayne et al., 1991) and hence fragmentation to small car-

bon compounds is unlikely. As shown in Fig. 8, the pro-

posed mechanism does not involve carbon cleaving reactions

which could result in small, water-soluble compounds. This

is further supported by the similarities in SOA yields between

dry and humid conditions. If these carbon cleaving reactions

dominate and form small, water-soluble species, the yields

should be much higher for the humid conditions than the dry

conditions.

We find that aerosol acidity has a negligible effect on

the SOA yield for the β-pinene+NO3 system (Fig. S4).

This is opposite to some previous studies where increases

in aerosol yields have been found under acidic conditions for

other SOA systems (using the same seeds as in our study),

such as ozonolysis of α-pinene and photooxidation of iso-

prene (e.g., Gao et al., 2004; Surratt et al., 2007). Acid-

catalyzed particle-phase reaction such as oligomerization has

been proposed for such “acid effects”. Although aerosol pro-

duced by the β-pinene+NO3 reaction can potentially un-

dergo oligomerization as well, it appears that the aerosol

products are of low enough volatility that further particle-

phase reactions (if any) do not enhance SOA yields. This in-

dicates that the “acid effect” is likely different for different

SOA systems, which would depend on the parent hydrocar-

bon, oxidant (ozone, OH, nitrate radicals), and other reac-

tion conditions. In general, the SOA yields for nitrate radical

oxidation of BVOCs are higher than corresponding yields in

ozonolysis or OH radical oxidation (e.g., Griffin et al., 1999),

suggesting that no further particle-phase reaction is needed to

make the oxidation products more non-volatile and the “acid

effect” could be limited.

4.2.3 Effects of RO2+ NO3 vs. RO2+HO2 chemistry on

SOA yields

Previous studies have shown that the fate of peroxy radi-

cals can have a substantial effect on SOA formation (Kroll

and Seinfeld, 2008; Ziemann and Atkinson, 2012). For in-

stance, it has been shown in laboratory chamber studies that

the aerosol yields can differ by a factor of 2 depending on

the RO2 fate for the isoprene+NO3 system (Ng et al., 2008).

Although studies have proposed that RO2+NO3 is the major

nighttime RO2 fate in the ambient environments (Kirchner

and Stockwell, 1996), results from recent field studies sug-

gested that HO2 radicals are abundant at night (Mao et al.,

2012). The high HO2 radical concentration could result in

the RO2+HO2 reaction becoming the dominant RO2 radical

fate in the nighttime atmosphere. In our study, the experi-

mental protocols are designed to promote the “RO2+NO3”

or “RO2+HO2” reaction channel. These two scenarios would

be representative of nitrate radical oxidation in environments

with varying levels of NOx . To our knowledge, this is the
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first study in which the fate of peroxy radicals is considered

in SOA formation from nitrate radical oxidation of monoter-

penes. A simple kinetic model based on MCMv3.2 (Saunders

et al., 2003) is developed to simulate the gas-phase chem-

istry for the β-pinene+NO3 reaction. The simulation results

suggest that in both “RO2+NO3 dominant” and “RO2+HO2

dominant” experiments, the cross-reactions of RO2 radicals

are not a significant reaction pathway (Fig. S10). Figure 4

shows that the SOA yields from the “RO2+HO2 dominant”

experiments are similar to the “RO2+NO3 dominant” ex-

periments. The similar yields under these different reaction

conditions could arise from a comparable suite of reaction

products between the two reaction pathways. The reaction

of RO2+NO3 produces an RO radical (Fig. 8, Reaction R16)

which can undergo decomposition or isomerization (Orlando

and Tyndall, 2012; Ziemann and Atkinson, 2012). Typically,

it is expected that the RO2+HO2 reaction will lead to the for-

mation of peroxides (Orlando and Tyndall, 2012; Ziemann

and Atkinson, 2012). However, a recent study by Hasson et

al. (2012) showed that for highly substituted peroxy radi-

cals, the RO2+HO2 reaction favors the formation of RO rad-

icals. Additionally, several previous studies showed that as

carbon chain length increases (C2–C4), the RO2+HO2 re-

action becomes less likely to form the ROOH product and

more likely to form the RO product (Jenkin et al., 2007; Dil-

lon and Crowley, 2008; Hasson et al., 2012). In the case of

β-pinene+NO3, RO2 radicals are expected to form on the

tertiary carbon as the nitrate radicals tend to attack the least

substituted carbon of a double bond, leading to the forma-

tion of tertiary peroxy radicals (Wayne et al., 1991) (Fig. 8).

Given β-pinene is a C10 compound and forms a highly sub-

stituted peroxy radical, we hypothesize that the RO2+HO2

reaction pathway in our study forms RO radicals as sug-

gested by Hasson et al. (2012), leading to a similar peroxy

radical fate as in the “RO2+NO3 dominant” experiments.

We note that the RO2+HO2 reaction still leads to formation

of ROOH as measured by CIMS (Fig. S2). Thus, it appears

that the RO2+HO2 channel does not exclusively produce RO

radicals in our case. Nevertheless, based on the similar SOA

yields in the “RO2+NO3 dominant” and “RO2+HO2 domi-

nant” experiments, we propose that either the RO radical is

the dominant product of the RO2+HO2 reaction pathway, or

that ROOH has a similar volatility to the products formed

from the RO radicals in the “RO2+NO3 dominant” experi-

ments.

SOA is collected on filters for several experiments and

analyzed using UHPLC in order to characterize the parti-

cle composition. Figure 9 shows the ratios of the total areas

under the UV–visible chromatograms for “RO2+HO2 dom-

inant” and “RO2+NO3 dominant” experiments, under both

humid and dry conditions. Chromatograms collected at 205,

235, and 270 nm are integrated to get the total area at each

wavelength and the standard deviation from two measure-

ments. Total areas are normalized by the estimated organic

mass loading on the corresponding filters. The wavelengths
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Figure 9. Ratio of the total areas integrated under UV–visible chro-

matograms collected at 235 nm (gray bars; ROOR and ROOH) and

270 nm (teal bars; -C=O and -ONO2) relative to 205 nm for experi-

ments dominated by (left-hand side panel) RO2+NO3 reaction and

(right-hand side panel) RO2+HO2 reaction under both humid and

dry conditions.

chosen represent a good proxy for certain functional groups

that absorb in these regions. More specifically, λ= 235 nm

corresponds to a region of strong absorption by ROOR and

ROOH (Farmer et al., 1943; Turrà et al., 2010; Ouchi et al.,

2013), while λ= 270 nm is a compromise wavelength that

represents both carbonyl and alkyl nitrate functional groups

(Xu et al., 1993; Pavia et al., 2008). Finally, λ= 205 nm is

chosen as the normalization wavelength because practically

all organic matter present in the sample absorbs in this UV

region. Figure 9 shows the ratio of total areas at 235 nm

and 270 nm relative to the value at 205 nm, which provides

a qualitative comparison of the samples. By comparing the

amounts (areas) of the 235 and 270 nm absorbing species, the

effect of humidity on each branching pathway (RO2+HO2

or RO2+NO3) can be assessed. How much -ONO2, -C=O,

ROOR, and ROOH is produced under each humidity level

determines the relative reactivity between the humid vs. dry

conditions of each branching pathway. The relative reactivity

for both reaction channels is similar within 1 standard devia-

tion for all humidity conditions studied, indicating that each

condition may have a similar product distribution. A compar-

ison between the RO2+ HO2 and RO2 + NO3 pathways can-

not be made in this manner because NO3 concentrations are

different. The seemingly smaller areas for species produced

in the HO2 panel could simply be due to a larger amount

of non-nitrated organic matter being produced that absorbs

at the normalization wavelength. However, one slight differ-

ence is the enhancement in the production of C10H15NO6

(m/z 244, an RCOOH species) in the “RO2+HO2 dominant”

experiments, which increases by 2 and 7 times under dry and

humid conditions, respectively, relative to the “RO2+NO3

dominant” experiments. This observation indicates that in the

presence of additional HO2, the oxidation is directed toward

the synthesis of C10H15NO6 (m/z 244) more efficiently. This

can be explained by an enhancement of the reaction sequence
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R21 + R22 in Fig. 8, which is enhanced at high HO2 radical

concentrations.

4.3 Particulate organic nitrate formation and

hydrolysis

4.3.1 Organic nitrate formation

The mass spectrum in Fig. 5 indicates the presence of a large

fraction (11 %) of nitrate in the aerosol formed from the β-

pinene+NO3 reaction. Approximately 90 % of the N atoms

in the spectrum are found on the NO+ and NO+2 fragments.

Most of the nitrate signal is assumed to be from organic

species (i.e., organic nitrates) as N2O5 uptake to the parti-

cles is negligible and the NO+ :NO+2 ratio is high. In humid

experiments, the heterogeneous hydrolysis of N2O5 could

lead to the formation of inorganic nitrates (e.g., HNO3). To

evaluate the contribution of inorganic nitrates to the total

NO+ and NO+2 ions measured by the HR-ToF-AMS, we

perform two characterization experiments (RH= 50 %) in

which only N2O5 (the maximum amount of N2O5 used in our

aerosol experiments) and seed aerosol ((NH4)2SO4 seed or

(NH4)2SO4+H2SO4 seed) are injected into the chambers. In

both cases, using a relative ionization efficiency (RIE) of 1.1

for nitrate results in a nitrate growth of less than 0.1 µg m−3

detected by the HR-ToF-AMS (Rollins et al., 2009). The up-

take of N2O5 is even less likely in the SOA yield experi-

ments. It has been shown that when comparing to inorganic

seed only, the presence of organic matter decreased N2O5 up-

take by 80 % (Gaston et al., 2014). Therefore, the contribu-

tion of inorganic nitrates to the total nitrate signals measured

by the HR-ToF-AMS in our experiments is negligible.

It has been shown previously that the NO+ :NO+2 ratio

in the HR-ToF-AMS mass spectrum can be used to infer

the presence of particle-phase organic nitrates (Farmer et

al., 2010). Specifically, Farmer et al. (2010) suggested that

the NO+ :NO+2 ratio is much higher for organic nitrates (ra-

tio= 5–15) than inorganic nitrates (ratio ∼ 2.7), and there-

fore aerosol with a high NO+:NO+2 ratio likely also has a

high concentration of organic nitrates. Figure 5 shows that

approximately only two-thirds of the signal atm/z 30 is from

NO+, while the remaining signal is from organic CH2O+

fragment. At peak aerosol growth under dry and humid con-

ditions, we determine from the high-resolution AMS data

that the average R-ON value for β-pinene+NO3 aerosol is

6.5 in “RO2+NO3 dominant” experiments and an average of

8.6 in “RO2+HO2 dominant” experiments. Previous studies

(Fry et al., 2009; Bruns et al., 2010) on the β-pinene+NO3

reaction suggested that the R-ON for β-pinene+NO3 SOA

is on the order of 10 : 1, higher that the values determined in

this study. One possible explanation for the difference in R-

ON between this study and previous literature is instrument

bias. Different instruments may have different R-ON values.

One way to circumvent this bias is to compare the R-ON :R-

AN ratio. The average R-ON :R-AN for all experiments is

3.9, which is in agreement with values calculated by Fry et

al. (2009) and Bruns et al. (2010) (range 3.7–4.2). Another

explanation for this difference is the close proximity of the

CH2O+ ion to the NO+ ion in the aerosol mass spectrum,

which may result in a small bias in the calculated R-ON.

Specifically, if we were to include the contribution of the or-

ganic CH2O+ and CH2O+2 fragments at m/z 30 and m/z 46

(in addition to contribution from NO+ and NO+2 ) respec-

tively, the corresponding NO+ :NO+2 ratios would be higher,

i.e., 9 : 1 for “RO2+NO3 dominant” experiments and 11 : 1

for “RO2+HO2 dominant” experiments. Therefore, when us-

ing the NO+ :NO+2 ratio to estimate organic nitrate contribu-

tion in ambient OA, it is imperative that one excludes the

organic contribution (if any) at m/z 30 when calculating the

ratio.

One possible way to estimate the molar fraction of organic

nitrates in the aerosol from the HR-ToF-AMS data is to use

the N :C ratio (calculated by including contributions from

nitrate fragments) of the aerosol formed in the experiments.

Since β-pinene is a monoterpene, we assume its oxidation

products have approximately 10 carbon atoms. This is a rea-

sonable assumption based on the gas-phase oxidation prod-

ucts detected by CIMS (Fig. 8). The dominant reaction path-

way of nitrate radicals is addition via attack of the double

bond, adding one nitrate group to the primary carbon and

forming a peroxy radical. With one nitrate group and 10 car-

bons from the β-pinene precursor, the organic nitrate prod-

ucts are expected to have an N :C ratio of about 1 : 10. If

100 % of the SOA formed is composed of organic nitrates,

the HR-ToF-AMS data should have an N :C ratio of 0.1. The

average N :C ratio for all experiments measured by the HR-

ToF-AMS is approximately 0.074 for SOA formed from β-

pinene+NO3 at peak growth. Thus, as an upper bound, it

is approximated that the molar fraction of organic nitrates

in the aerosol is 74 %. Even if there is fragmentation, the

organic nitrate fraction in the aerosol would remain fairly

high. For instance, if the organic nitrate species only has

nine carbons, the upper-bound molar organic nitrate fraction

is approximately 67 %. If we assume the organic nitrate and

non-organic nitrate species have the same molecular weight,

the molar organic nitrate fraction in the aerosol is equal to

the fraction of aerosol mass composed of organic nitrates.

In addition to N :C, the HR-ToF-AMS nitrate : org mass ra-

tio can also be used to estimate the particle organic nitrate

fraction. The average nitrate : org mass ratio measured by

the HR-ToF-AMS for all experiments is about 0.16. We as-

sume the organic nitrate compound has an average molecu-

lar weight between 200 and 300 g mol−1 based on the pre-

dicted products (Fig. 8), where 62 g mol−1 is attributed to the

nitrate group while the remaining mass is from the organic

mass. Using both the nitrate : org mass ratio and the assumed

range of molecular weights for the organic nitrate species,

the fraction of aerosol mass composed of organic nitrates is

estimated to be 45–68 %. We estimate that the fraction of
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aerosol mass composed of organic nitrates is 60 %, based on

the average value of the extremes of the two estimates. This

is comparable to the fraction of aerosol mass composed of or-

ganic nitrates estimated by Fry et al. (2014) (56 %) but higher

than that reported by Fry et al. (2009) (30–40 %). The dif-

ferent experimental conditions in our study vs. those in Fry

et al. (2009) may have contributed to the difference in the

fraction of aerosol mass composed of organic nitrates. For

example, the ratio of NO2 to O3 used to make NO3 radicals

in Fry et al. (2009) is lower than this study, which may have

led to differing branching ratios of β-pinene+NO3 vs. β-

pinene+O3.

4.3.2 Hydrolysis and organic nitrate fate

As shown in Fig. 7, for experiments with the same initial

hydrocarbon concentration, the AMS nitrate-to-organics ra-

tio of the humid experiments normalized by the dry exper-

iments stabilize at a ratio of about 0.9. The nitrate radical

addition at the double bond of β-pinene can lead to the for-

mation of either primary or tertiary nitrates. Previous studies

of organic nitrate hydrolysis in bulk solutions showed that

while saturated primary nitrates hydrolyze on the order of

months, tertiary nitrates hydrolyze on the order of minutes

(Darer et al., 2011). Primary organic nitrates with double

bonds can hydrolyze on the order of minutes (Jacobs et al.,

2014), but oxidation products from the β-pinene+NO3 reac-

tion are likely saturated compounds due to the lone double

bond of β-pinene (Fig. 8). Therefore, the point at which ni-

trate mass stops decreasing is interpreted as when all tertiary

nitrates have hydrolyzed. As the oxidation products typically

contain only one nitrate group (Fig. 8), we infer that, within

experimental error, approximately 90 % of the organic ni-

trates formed from the β-pinene+NO3 reaction are primary

nitrates. These results are consistent with findings that a ni-

trate radical is more likely to attack the less substituted car-

bon, which, in the case for β-pinene, is the terminal carbon

(Wayne et al., 1991). Since the nitrate addition is the first re-

action step, any subsequent differences in peroxy radical fate

(e.g., RO2+NO3 vs. RO2+HO2) will not affect the relative

amount of primary vs. tertiary nitrates in our systems.

Based on the decay rate of (nitrate : org)norm, the hydrol-

ysis lifetime of the tertiary nitrates formed in the reaction

of β-pinene with nitrate radicals is calculated to be approxi-

mately 3–4.5 h. This is on the same order of magnitude as the

hydrolysis lifetime (6 h) of the proposed tertiary organic ni-

trates formed from photooxidation of trimethyl benzene in

the presence of NOx (Liu et al., 2012). Results from our

study therefore do not suggest that nitrate radical chemistry

produces organic nitrates with different hydrolysis rates than

what is previously known for primary or tertiary organic ni-

trates. Instead, this study proposes that the fraction of tertiary

organic nitrates produced from nitrate radical chemistry is

much lower than SOA produced from photooxidation in the

presence of NOx . While we directly demonstrate this to be

true in the case of the β-pinene+NO3 system, this can also

be applied to commonly emitted terpenes, including those

with internal double bonds. From the list of terpenes in Guen-

ther et al. (2012), all unsaturated terpenes have at least one

double bond with a secondary or primary carbon. For exam-

ple, α-pinene contains an internal double bond connecting a

tertiary carbon to a secondary carbon. The nitrate radical is

more likely to attack the less substituted carbon (i.e., the sec-

ondary carbon) and form a secondary organic nitrate. As pri-

mary/secondary and tertiary organic nitrates have drastically

different hydrolysis rates, it is imperative that their relative

contribution be accurately represented in models when de-

termining the fate of ambient organic nitrates. A recent study

by Browne et al. (2013) modeled the hydrolysis of organic

nitrates in a forested region by assuming that 75 % of atmo-

spheric organic nitrates formed in the day are composed of

tertiary organic nitrates, based on the average fraction of ter-

tiary organic nitrates from the photooxidation of α-pinene

and β-pinene in the presence of NOx . This has implications

not only on the organic nitrate fate, but also on the forma-

tion of nitric acid, a byproduct of organic nitrate hydrolysis

(Sato, 2008). With this, Browne et al. (2013) predicted that

hydrolysis of organic nitrates produced in the daytime could

account for as much as a third to half of all nitric acid pro-

duction. However, when considering organic nitrates formed

both in the day and at night, the fraction of tertiary organic

nitrates in ambient organic nitrates is likely lower than that

used by Browne et al. (2013). This is especially true in ar-

eas where nitrate radical oxidation is the dominant source

of organic nitrates (e.g., NOx > 75 ppt in forested regions as

noted in Browne et al., 2014). It is recommended that future

modeling studies of organic nitrate fates should consider or-

ganic nitrates formed both in the day and at night in order to

take into account the large contribution of primary organic

nitrates (which do not hydrolyze appreciably) formed from

nitrate radical oxidation of monoterpenes.

Previous studies suggested that hydrolysis of organic ni-

trates can be an acid-catalyzed process in both solution

(Szmigielski et al., 2010) and directly in the particle phase

(Rindelaub et al., 2015). However, it has been found that

primary and secondary organic nitrates are stable unless

the aerosol is very acidic (pH< 0) (Darer et al., 2011;

Hu et al., 2011). We calculate the corresponding change

in the (nitrate : org)norm ratio for the experiments where

(NH4)2SO4+H2SO4 seed is used (data not shown in Fig. 7).

We find that for these experiments, the (nitrate : org)norm ra-

tio also becomes constant at around 0.9, similar to that of

the (NH4)2SO4 seed experiments. However, the experiments

using (NH4)2SO4+H2SO4 seed have a more rapid rate of

decrease in the (nitrate : org)norm ratio. This suggests that

while hydrolysis of tertiary nitrates is accelerated under more

acidic conditions, primary organic nitrates do not hydrolyze

at an observable rate for the pH conditions employed in

this study. As the majority of the particulate organic nitrates

formed in our experiments are primary nitrates, we infer that
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particle acidity may not have a significant impact on the hy-

drolysis of organic nitrates formed in the BVOCs+NO3 re-

action, except in the cases where the double bond on the

BVOCs connects two tertiary carbons, such as terpinolene.

4.4 Aerosol aging in the dark

While the aging of SOA has been extensively investigated in

multiple photooxidation studies and shown to affect aerosol

mass (e.g., Donahue et al., 2012; Henry and Donahue, 2012),

little is known regarding aerosol aging by nitrate radicals (Qi

et al., 2012). A number of theoretical (Kerdouci et al., 2010,

2014; Rayez et al., 2014) and experimental studies (Atkin-

son, 1991; Wayne et al., 1991) suggested that hydrogen ab-

straction by nitrate radicals occurs, especially for hydrogen

atoms attached to aldehyde groups. As shown in Fig. 8, the

β-pinene+NO3 reaction can lead to the formation of com-

pounds with carbonyl groups, allowing for potential night-

time aging of SOA by nitrate radicals. We focus our aerosol

aging discussion on the “RO2+NO3 dominant” experiments,

where the oxidant (nitrate radicals) concentrations are higher.

As aerosol ages, first-generation products either function-

alize, which decreases volatility, or fragment, which can lead

to an overall increase in volatility (Kroll et al., 2009). If frag-

mentation is the dominant pathway, a decrease in organic

mass is expected as products become more volatile and re-

partition back to the gas phase. We use the AMS org : sulfate

ratio as a proxy to examine the effect of aerosol aging on or-

ganics mass in our experiments. As wall loss of particles will

lead to a decrease in organic loading, normalizing the organic

loadings by sulfate allows us to examine the net change in

the organics mass over the course of the experiments. The

use of org : sulfate is a good proxy for aerosol aging when

the organics only condense onto existing ammonium sulfate

particles. A study by Loza et al. (2012) has demonstrated

that in the case of rapid condensation of organic species, the

timescale of condensation is less than the timescale of diffu-

sion to existing seed particle. When in this “diffusion-limited

growth” regime, the organic mass partially nucleates to form

new particles. Since the nucleated particles are smaller than

those particles in which ammonium sulfate acted as a seed

for condensation, organics contained in these nucleated par-

ticles will be lost to the chamber walls more rapidly than the

existing seed particles (Fig. S3). This could lead to an overall

decrease in the org : sulfate ratio. In our study, the org : sulfate

ratio decreases after SOA reaches peak growth (Fig. 6). It is

possible that this decrease is caused by wall loss of organic

particles formed in the diffusion-limited growth regime. It

is also possible that fragmentation of aerosol components is

the dominant aging pathway, resulting in a decrease in the

org : sulfate ratio. Regardless, there is still evidence of in-

creased functionalization over the course of the experiments.

Rapid loss of organics due to particle wall loss or fragmen-

tation of SOA would cause all AMS organic families to ei-

ther decrease or remain constant relative to sulfate. However,

Fig. 6 shows that the highly oxidized fragments (CHOgt1,

fragments with greater than 1 oxygen atom) increase slightly

relative to sulfate while the non-oxidized fragments (CH) are

lost at nearly twice the rate as the slightly oxidized frag-

ments (CHO1). Since non-oxidized fragments are lost more

quickly than less-oxidized fragments, it is possible that fur-

ther particle-phase reactions are leading to the formation of

highly oxidized compounds.

For the β-pinene+NO3 reaction, carboxylic acids can be

formed from the abstraction of hydrogen from aldehydes and

subsequent oxidation (Fig. 8). The observed ions at m/z 356

and m/z 372 in CIMS likely correspond to a hydroxy car-

bonyl nitrate and carboxylic acid, respectively. As shown in

Fig. 2, m/z 356 decreases over the course of the experiment

while m/z 372 increases. The possible conversion of alde-

hydes to carboxylic acids is also noticeable in the aerosol

chemical composition. The m/z 44 (CO+2 ) fragment in the

HR-ToF-AMS data likely arise from thermal decomposition

of carboxylic acids (Duplissy et al., 2011) and is commonly

used to infer the extent of aerosol aging (Ng et al., 2011).

Although the f44 (fraction of CO+2 ion to total organics) in

the typical mass spectrum of β-pinene+NO3 SOA is low

(< 3 %), there is a noticeable and continued increase in f44

after peak aerosol growth (Fig. 6). Specifically, during the

2.5 h following peak growth, f44 increases by as much as

30 % under dry conditions. Under humid conditions, the in-

crease in f44 is only 6 %. These correspond to an 18 and

6 % increase in the O :C ratio (calculated without contribu-

tions from nitrate fragments) of the aerosol under dry (O :C

ranging from 0.33 to 0.39 for all experiments) and humid

conditions (O :C ranging from 0.33 to 0.35), respectively.

The lower degree of aging in humid experiments is consis-

tent with the observation that the CIMS N2O5 signals, while

not quantified, are clearly lower (by at least a factor of 2) in

the humid “RO2+NO3 dominant” experiments when com-

pared to dry experiments. This is likely due to the uptake of

N2O5 to wet chamber and/or aerosol surfaces (Thornton et

al., 2003).

It is unlikely that the observed decrease in organic species

relative to sulfate and the decrease in gas phase species are

due to differences in vapor phase wall loss. Matsunaga and

Ziemann (2010) determined that highly oxidized gaseous or-

ganic compounds are lost to the chamber walls faster than

compounds that have a lower degree of oxidation. Addition-

ally, the gas wall partitioning coefficient for a specific com-

pound has also been shown to increase with decreasing va-

por pressure (Yeh and Ziemann, 2014), with highly oxidized

species typically having lower vapor pressures than less oxi-

dized species (Pankow and Asher, 2008). If vapor-phase wall

loss is the driving factor for the decrease of organics in this

study, it would be expected that oxidized compounds would

be lost to the walls more rapidly. Subsequently, these highly

oxidized compounds would re-partition back to the gas phase

in order to re-establish particle-gas equilibrium. The decrease

in organics shown in Fig. 6, however, indicates more rapid
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losses of non-oxidized fragments compared to oxidized frag-

ments. The less oxidized species measured by CIMS (lower

molecular weight) as shown in Fig. 2 also decrease more

rapidly than the more oxidized species. Therefore, the change

in chemical composition and decrease in vapor phase species

is more likely attributable to aerosol aging than to vapor wall

partitioning.

5 Relevance to ambient measurements

Results from this study provide the fundamental informa-

tion to evaluate the extent to which nitrate radical oxida-

tion of monoterpenes contributes to ambient organic aerosol.

This reaction provides a direct mechanism for linking anthro-

pogenic and biogenic emissions, and is likely substantial in

the southeastern United States, where both types of emis-

sions are high. A recent field campaign, SOAS, took place

in Centreville, Alabama, from 01 June to 15 July 2013 to

investigate the effects of anthropogenic pollution in a region

with large natural emissions. Based on positive matrix factor-

ization (PMF) analysis of the HR-ToF-AMS data obtained in

SOAS, Xu et al. (2015b) identified an OA subtype termed as

less-oxidized oxygenated organic aerosol (LO-OOA), which

accounted for 32 % of the total OA at Centreville. LO-OOA

peaks at night and is well correlated with particle-phase or-

ganic nitrates. These suggest that LO-OOA is produced pre-

dominantly from nighttime monoterpene+NO3 chemistry,

especially from β-pinene+NO3 as β-pinene has a high night-

time concentration (Xu et al., 2015b). Results from the cur-

rent laboratory chamber study provide the relevant funda-

mental data for estimating the amount of aerosol produced

from monoterpene+NO3 in SOAS. The campaign-averaged

loading of non-refractory PM1 in SOAS is about 8 µg m−3

and it has been determined that the aerosol is highly acidic

(pH= 0.94± 0.59) and contains a large amount of particu-

late water (5.09± 3.76 µg m−3) (Cerully et al., 2014; Guo

et al., 2015). At night, the RH can reach up to 90 % during

the SOAS measuring period (Guo et al., 2015). The current

chamber study is designed to probe SOA formation from ni-

trate radical oxidation under atmospherically relevant load-

ings, under high humidity, and in the presence of seed aerosol

of different acidity. The fates of peroxy radicals at night are

highly uncertain, which mainly arises from the lack of con-

straints on the reaction rates of the peroxy radicals with other

species, such as RO2+NO3 (Brown and Stutz, 2012). In our

study, the experiments are conducted under both “RO2+NO3

dominant” and “RO2+HO2 dominant” regimes to explore

the effects of peroxy radial fates on SOA formation. Using

a SOA yield of 50 % (for a mass loading of 8 µg m−3 ob-

tained from the yield curve) in the presence of acidic seed

at RH= 70 % obtained from “RO2+HO2 dominant” experi-

ments, Xu et al. (2015b) estimated that about 50 % of night-

time OA production could be due to the reaction of monoter-
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Figure 10. A comparison of mass spectra obtained from this work

and the LO-OOA factor identified from PMF analysis of the HR-

ToF-AMS data from the SOAS field campaign. (a) Mass spectrum

of the SOA formed from the β-pinene+NO3 reaction at RH= 70 %

under “RO2+HO2 dominant” conditions and (NH4)2SO4+H2SO4

seed (Experiment 34 in Table 1). (b) Mass spectrum for the LO-

OOA factor identified from PMF analysis of the SOAS HR-ToF-

AMS data (Xu et al., 2015b). The mass spectra are colored by

the ion type to indicate their contribution to the mass spectra. Ions

C5H+7 (m/z 67) and C7H+7 (m/z 91) are distinctive for the β-pinene

mass spectrum (Sect. 5 of main text). To facilitate comparison,

m/z> 50 have been multiplied by a factor of 3 in the LO-OOA

spectrum.

penes with nitrate radicals in SOAS, a large fraction of which

is from β-pinene+NO3 reaction.

It is noted that the LO-OOA factor is also resolved at

both rural and urban sites around the greater Atlanta area in

all seasons, where HR-ToF-AMS measurements were con-

ducted as part of the SCAPE (Verma et al., 2014; Xu et al.,

2015a, b). It is found that LO-OOA made up 18–36 % of the

total OA in rural and urban areas, suggesting that a fairly

large fraction of total OA in the southeastern United States

could arise from nitrate radical oxidation of monoterpenes.

Figure 10 shows a comparison of the aerosol mass

spectrum from a typical β-pinene+NO3 experiment from

this study and the LO-OOA factor obtained from SOAS

data. As LO-OOA could have other sources in addition to

monoterpene+NO3, the two spectra are not in perfect agree-

ment but they do show similar features above m/z 60. Most
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noticeable of these are m/z 67 (C5H+7 ) and m/z 91 (C7H+7 )

with a ratio of these two ions (C5H+7 : C7H+7 ) of about 2.9

(ranging from 2.5 to 3.6 in other experiments). The mass

spectra for the other SOA-forming systems predicted to be of

importance at SOAS, namely, α-pinene ozonolysis (Chhabra

et al., 2010), isoprene photooxidation (Chhabra et al., 2010),

and nitrate radical-initiated isoprene chemistry (Ng et al.,

2008), do not show significant intensities at either of these

two ions. Therefore, it is likely that high signals at C5H+7
and C7H+7 in ambient aerosol mass spectrum could be in-

dicative of the presence of β-pinene+NO3 reaction products.

We note that the average NO+ :NO+2 ratio for aerosol mea-

sured at SOAS is 7.1, consistent with the high NO+ :NO+2
ratio from the SOA formed from nitrate radical oxidation of

β-pinene in this study.

The gas-phase oxidation products detected by the CIMS

in this study can also be used to help interpret ambient data

to evaluate the possible contribution of β-pinene+NO3 reac-

tion. For instance, a significant amount of gas-phase organic

nitrate species with MW of 215 amu and 231 amu have been

observed during the Biosphere Effects of Aerosols and Pho-

tochemistry Experiment (BEARPEX) campaign in fall 2009

(Beaver et al., 2012). As these species exhibited a night-

time peak, Beaver et al. (2012) suggested that they could

arise from nighttime oxidation of α-pinene or β-pinene by ni-

trate radicals. The proposed mechanism for β-pinene+NO3

(Fig. 8) show multiple reaction pathways to form species

with MW= 215 amu and MW= 231 amu. Therefore, the ox-

idation of β-pinene by nitrate radicals represents one pos-

sible pathway for the formation of the species detected by

Beaver et al. (2012). As the β-pinene+NO3 reaction has

shown to be important at SOAS (Xu et al., 2015b), it is ex-

pected that the gas-phase compounds observed in this cham-

ber study could help explain some of the species detected by

the multiple CIMS deployed during the SOAS study.

6 Atmospheric implications

Although photooxidation is expected to be the major oxida-

tion pathway for atmospheric VOCs, nitrate radical oxidation

can account for as much as 20 % of global BVOC oxidation

and is predicted to lead to an aerosol mass increase by as

much as 45 % when compared to the modeled case where this

chemistry is excluded (Pye et al., 2010). Due to high SOA

yields, evaluating the mass of aerosol produced by nitrate

radical-initiated chemistry is essential to estimate the total

organic aerosol burden, both on regional and global scales.

Currently, the aerosol yields from nitrate radical oxidation of

monoterpenes in most models are assumed to be the same as

those determined from β-pinene+NO3 reactions in Griffin et

al. (1999) (Pye et al., 2010). In this study, we systematically

investigate SOA formation from the nitrate radical oxidation

of β-pinene under various reaction conditions (dry, humid,

differing radical fate) and a wide range of initial hydrocarbon

concentrations that are atmospherically relevant. We deter-

mine that the SOA yields from the β-pinene+NO3 systems

are consistent with Griffin et al. (1999) for mass loadings

> 45 µg m−3, but as much as a factor of 4 higher than those

reported in Griffin et al. (1999) for lower mass loadings. The

lower SOA yields reported in Griffin et al. (1999) could arise

from uncertainties in extrapolating data from higher mass

loadings to lower mass loadings in that study, as well as from

slower reaction rates and vapor wall loss effects (Zhang et al.,

2014). While it is likely that the SOA yields from the nitrate

radical oxidation of various monoterpenes are different (Fry

et al., 2014), updating SOA formation from β-pinene+NO3

with the new yield parameters in future modeling studies

would lead to a more accurate prediction of the amount of

aerosol formed from this reaction pathway.

Currently, the fate of peroxy radicals (RO2+HO2 vs.

RO2+NO3, etc.) in the nighttime atmosphere is still highly

uncertain (Brown and Stutz, 2012), though recent studies

showed that the HO2 mixing ratio is often on the order of

10 ppt (Mao et al., 2012). Thus, RO2+HO2 could be the

dominant nighttime fate of peroxy radicals. In this study, we

examine the effect of RO2 fate on aerosol yields for the β-

pinene+NO3 system. Although more ROOH species are pro-

duced through the RO2+HO2 channel, the SOA yields in the

“RO2+NO3 dominant” and “RO2+HO2 dominant” experi-

ments are comparable. This indicates that for this system,

the overall product chemical composition and volatility dis-

tribution may not be very different for the different peroxy

radical fates. This is in contrast to results from nitrate radi-

cal oxidation of smaller biogenic species, such as isoprene,

which have large differences in SOA yields depending on the

RO2 fate (Ng et al., 2008). This suggests that the fates of per-

oxy radicals in nitrate radical experiments for larger BVOCs

(such as monoterpenes and sesquiterpenes) may not be as im-

portant as it is for small compounds (such as isoprene) and

in photooxidation and ozonolysis experiments (e.g., Presto et

al., 2005; Kroll et al., 2006; Ng et al., 2007a; Eddingsaas et

al., 2012; Xu et al., 2014); this warrants further studies.

The results from this study provide the first insight

for the specific organic nitrate branching ratio on the β-

pinene+NO3 system. We determine that about 90 and 10 %

of the organic nitrates formed from the β-pinene+NO3 re-

action are primary organic nitrates and tertiary organic ni-

trates, respectively. As primary and tertiary organic nitrates

hydrolyze at drastically different rates, the relative contribu-

tion of primary vs. tertiary organic nitrates determined in

this work would allow for improved constraints regarding

the fates of organic nitrates in the atmosphere. Specifically,

we find that the primary organic nitrates do not appear to

hydrolyze and the tertiary organic nitrates undergo hydrol-

ysis with a lifetime of 3–4.5 h. Updating the branching ra-

tio (primary vs. tertiary) with organic nitrates formed by the

NO3-initiated oxidation of BVOCs will improve model pre-

dictions of hydrolysis of organic nitrates. Hydrolysis of or-

ganic nitrates has the potential to create a long-term sink for

www.atmos-chem-phys.net/15/7497/2015/ Atmos. Chem. Phys., 15, 7497–7522, 2015
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atmospheric nitrogen in the form of nitric acid. Organic ni-

trates that do not hydrolyze, however, can potentially be pho-

tolyzed or oxidized by OH radicals to release NOx back into

the atmosphere (Suarez-Bertoa et al., 2012) or lost by dry or

wet deposition.

Results from this chamber study are used to evaluate the

contributions from the nitrate radical oxidation of BVOCs

to ambient OA in the southeastern United States, where this

chemistry is expected to be substantial owing to high nat-

ural and anthropogenic emissions in the area. Factor anal-

ysis of HR-ToF-AMS data from SOAS and SCAPE field

measurements identified an OA subtype (LO-OOA) at these

sites which is highly correlated with organic nitrates (Xu et

al., 2015a, b). The β-pinene+NO3 SOA yields obtained un-

der reaction conditions relevant to these field studies are di-

rectly utilized to estimate the amount of ambient OA formed

from this reaction pathway (Xu et al., 2015b). Specifically,

it is estimated that 50 % of nighttime OA production occurs

through the reaction of monoterpenes with nitrate radicals

in SOAS (Xu et al., 2015b). Using the average R-ON :R-

AN ratio obtained from this study and prior literature values,

Xu et al. (2015a) estimated that organic nitrates contribute

5–12 % of total organic aerosol in the southeastern United

States in summer, indicating organic nitrates are important

components in ambient aerosol. Results from this study and

Xu et al. (2015a, b) illustrate the substantial insights one can

gain into aerosol formation chemistry and ambient aerosol

source apportionment through coordinated fundamental lab-

oratory studies and field measurement studies. Further, mul-

tiple gas-phase organic nitrate species are identified in this

chamber study, which could be used to help interpret ambi-

ent gas-phase composition data obtained from the large suite

of gas-phase measurements in SOAS. Owing to difficulties in

measuring complex atmospheric processes, laboratory stud-

ies are critical in generating fundamental data to understand

and predict SOA formation regionally and globally. In this

regard, it is imperative not to view laboratory studies as iso-

lated efforts, but instead to make them essential and inte-

grated parts of research activities in the wider atmospheric

chemistry community (e.g., field campaigns).

The Supplement related to this article is available online

at doi:10.5194/acp-15-7497-2015-supplement.
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