142 research outputs found

    Exploring the Kondo model in and out of equilibrium with alkaline-earth atoms

    Full text link
    We propose a scheme to realize the Kondo model with tunable anisotropy using alkaline-earth atoms in an optical lattice. The new feature of our setup is Floquet engineering of interactions using time-dependent Zeeman shifts, that can be realized either using state-dependent optical Stark shifts or magnetic fields. The properties of the resulting Kondo model strongly depend on the anisotropy of the ferromagnetic interactions. In particular, easy-plane couplings give rise to Kondo singlet formation even though microscopic interactions are all ferromagnetic. We discuss both equilibrium and dynamical properties of the system that can be measured with ultracold atoms, including the impurity spin susceptibility, the impurity spin relaxation rate, as well as the equilibrium and dynamical spin correlations between the impurity and the ferromagnetic bath atoms. We analyze the non-equilibrium time evolution of the system using a variational non-Gaussian approach, which allows us to explore coherent dynamics over both short and long timescales, as set by the bandwidth and the Kondo singlet formation, respectively. In the quench-type experiments, when the Kondo interaction is suddenly switched on, we find that real-time dynamics shows crossovers reminiscent of poor man's renormalization group flow used to describe equilibrium systems. For bare easy-plane ferromagnetic couplings, this allows us to follow the formation of the Kondo screening cloud as the dynamics crosses over from ferromagnetic to antiferromagnetic behavior. On the other side of the phase diagram, our scheme makes it possible to measure quantum corrections to the well-known Korringa law describing the temperature dependence of the impurity spin relaxation rate. Theoretical results discussed in our paper can be measured using currently available experimental techniques.Comment: 22 pages, 12 figure

    The novel technique of vapor pressure analysis to monitor the enzymatic degradation of PHB by HPLC chromatography

    Get PDF
    A novel method was introduced for the quantitative determination of substances in aqueous solutions by using the evaporative light scattering (ELS) detector of a high performance liquid chromatograph (HPLC). The principle of the measurement is the different equilibrium vapor pressure of the solvent and the analyte resulting in decreasing evaporation rate, larger droplets and stronger signal with increasing concentration. The new technique based on vapor pressure analysis was validated with traditional UV-Vis detection carried out with a diode array detector (DAD). The new technique was used for monitoring the concentration of solutions obtained during the enzymatic degradation of poly(3-hydroxybutyrate) yielding the 3-hydroxybutyrate monomer as the product. The accuracy of the measurement allowed the determination of degradation kinetics as well. The results obtained with the two techniques showed excellent agreement at small concentrations. Deviations at larger concentrations were explained with the non-linear correlation between analyte concentration and detector signal and the linear regression used for calibration. Mathematical analysis of the method made possible the determination of the evaporation enthalpy of the analyte as well. The new approach is especially suitable for the quantitative analysis of compounds, which do not absorb in the detection range of the DAD detector or if their characteristic absorbance is close to the lower end of its wavelength range

    Functional analysis on a naturally occurring variant of the Staphylococcus Aureus uracil DNA Glycosylase inhibitor

    Get PDF
    Repair of DNA damage relies on various pathways including the base excision repair (BER) which targets erroneous bases in the DNA. Here, Uracil-DNA glycosylases (UDGs) are responsible for recognition and removal of uracil base from the DNA. Here, we characterize the interaction of Staphylococcus aureus UDG (SAUDG) with a naturally occurring variant of S. aureus uracil-DNA glycosylase inhibitor (SAUGI). This variant contains a histidine instead of a glutamate at the 24th position which affects the SAUDG:SAUGI interaction surface. We assessed the complex formation of SAUDG with these two SAUGI variants by independent biophysical methods. Our data reveal that the residue difference at the 24th position does not have a marked effect on the binding affinity, yet it confers alteration of the thermodynamics of the interaction. We propose that the E24H variant of SAUGI allows efficient complex formation, and consequently, inhibition of SAUDG. © 2018, Budapest University of Technology and Economics. All rights reserved

    Molecular Mechanism for the Thermo-Sensitive Phenotype of CHO-MT58 Cell Line Harbouring a Mutant CTP : Phosphocholine Cytidylyltransferase

    Get PDF
    Control and elimination of malaria still represents a major public health challenge. Emerging parasite resistance to current therapies urges development of antimalarials with novel mechanism of action. Phospholipid biosynthesis of the Plasmodium parasite has been validated as promising candidate antimalarial target. The most prevalent de novo pathway for synthesis of phosphatidylcholine is the Kennedy pathway. Its regulatory and often also rate limiting step is catalyzed by CTP:phosphocholine cytidylyltransferase (CCT). The CHO-MT58 cell line expresses a mutant variant of CCT, and displays a thermo-sensitive phenotype. At non-permissive temperature (40 degrees C), the endogenous CCT activity decreases dramatically, blocking membrane synthesis and ultimately leading to apoptosis. In the present study we investigated the impact of the analogous mutation in a catalytic domain construct of Plasmodium falciparum CCT in order to explore the underlying molecular mechanism that explains this phenotype. We used temperature dependent enzyme activity measurements and modeling to investigate the functionality of the mutant enzyme. Furthermore, MS measurements were performed to determine the oligomerization state of the protein, and MD simulations to assess the inter-subunit interactions in the dimer. Our results demonstrate that the R681H mutation does not directly influence enzyme catalytic activity. Instead, it provokes increased heat-sensitivity by destabilizing the CCT dimer. This can possibly explain the significance of the PfCCT pseudoheterodimer organization in ensuring proper enzymatic function. This also provide an explanation for the observed thermo-sensitive phenotype of CHO-MT58 cell line

    Internet addiction and functional brain networks: task-related fMRI study

    Get PDF
    A common brain-related feature of addictions is the altered function of higher-order brain networks. Growing evidence suggests that Internet-related addictions are also associated with breakdown of functional brain networks. Taking into consideration the limited number of studies used in previous studies in Internet addiction (IA), our aim was to investigate the functional correlates of IA in the default mode network (DMN) and in the inhibitory control network (ICN). To observe these relationships, task-related fMRI responses to verbal Stroop and non-verbal Stroop-like tasks were measured in 60 healthy university students. The Problematic Internet Use Questionnaire (PIUQ) was used to assess IA. We found significant deactivations in areas related to the DMN (precuneus, posterior cingulate gyrus) and these areas were negatively correlated with PIUQ during incongruent stimuli. In Stroop task the incongruent_minus_congruent contrast showed positive correlation with PIUQ in areas related to the ICN (left inferior frontal gyrus, left frontal pole, left central opercular, left frontal opercular, left frontal orbital and left insular cortex). Altered DMN might explain some comorbid symptoms and might predict treatment outcomes, while altered ICN may be the reason for having difficulties in stopping and controlling overuse

    The role of enzyme adsorption in the enzymatic degradation of an aliphatic polyester

    Get PDF
    The enzyme catalyzed degradation of poly(3-hydroxybutyrate) (PHB) is a two-step process consisting of the adsorption of the enzyme on the surface of a PHB substrate and the cleavage of ester bonds. A deactivated enzyme was prepared by point mutagenesis to separate the two steps from each other. Measurements carried out with active and inactive enzymes on PHB particles proved that mutagenesis was successful and the modified enzyme did not catalyze degradation. Based on the Michaelis-Menten approach a kinetic model was proposed which could describe the processes quantitatively, the agreement between prediction and the measured data was excellent. The separation of the two processes allowed the determination of the adsorption kinetics of the enzyme; the rate constants of the adsorption and desorption process were determined for the first time. Comparison of these constants to reaction rates showed that adsorption is not instantaneous and can be the rate-determining step. The area occupied by an enzyme molecule was also determined (13.1 nm2) and it was found to be smaller than the value published in the literature (17 ± 8 nm2). The separation of the two steps makes possible the prediction and control of the degradation process

    Differentiation between young adult Internet addicts, smokers, and healthy controls by the interaction between impulsivity and temporal lobe thickness

    Get PDF
    Background and aims: Internet addiction is a non-substance-related addiction disorder with progressively growing prevalence. Internet addiction, like substance-related addictions, has been linked with high impulsivity, low inhibitory control, and poor decision-making abilities. Cortical thickness measurements and trait impulsivity have been shown to have a distinct relationship in addicts compared to healthy controls. Thus, we test whether the cortical correlates of trait impulsivity are different in Internet addicts and healthy controls, using an impulsive control group (smokers). Methods: Thirty Internet addicts (15 females) and 60 age- and gender-matched controls (30 smokers, all young adults aged 19–28 years) were scanned using a 3T MRI scanner and completed the Barratt Impulsiveness Scale. Results: Internet addicts had a thinner left superior temporal cortex than controls. Impulsivity had a significant main effect on the left pars orbitalis and bilateral insula, regardless of group membership. We identified divergent relationships between trait impulsivity and thicknesses of the bilateral middle temporal, right superior temporal, left inferior temporal, and left transverse temporal cortices between Internet addicts and healthy controls. Further analysis with smokers revealed that the left middle temporal and left transverse temporal cortical thickness change might be exclusive to Internet addiction. Discussion: The effects of impulsivity, combined with a long-term exposure to some specific substance or stimuli, might result in different natures of relationships between impulsivity and brain structure when compared to healthy controls. Conclusion: These results may indicate that Internet addiction is similar to substance-related addictions, such that inefficient self-control could result in maladaptive behavior and inability to resist Internet use

    Comparing the hierarchy of keywords in on-line news portals

    Get PDF
    The tagging of on-line content with informative keywords is a widespread phenomenon from scientific article repositories through blogs to on-line news portals. In most of the cases, the tags on a given item are free words chosen by the authors independently. Therefore, relations among keywords in a collection of news items is unknown. However, in most cases the topics and concepts described by these keywords are forming a latent hierarchy, with the more general topics and categories at the top, and more specialised ones at the bottom. Here we apply a recent, cooccurrence-based tag hierarchy extraction method to sets of keywords obtained from four different on-line news portals. The resulting hierarchies show substantial differences not just in the topics rendered as important (being at the top of the hierarchy) or of less interest (categorised low in the hierarchy), but also in the underlying network structure. This reveals discrepancies between the plausible keyword association frameworks in the studied news portals

    A multicentre, prospective, randomised controlled trial to assess the safety and effectiveness of cooling as an adjunctive therapy to percutaneous intervention in patients with acute myocardial infarction: the COOL AMI EU Pivotal

    Get PDF
    Despite primary PCI (PPCI), ST-elevation myocardial infarction (STEMI) can still result in large infarct size (IS). New technology with rapid intravascular cooling showed positive signals for reduction in IS in anterior STEMI.We investigated the effectiveness and safety of rapid systemic intravascular hypothermia as an adjunct to PPCI in conscious patients, with anterior STEMI, without cardiac arrest.Hypothermia was induced using the ZOLL® Proteus™ intravascular cooling system. After randomisation of 111 patients, 58 to hypothermia and 53 to control groups, the study was prematurely discontinued by the sponsor due to inconsistent patient logistics between the groups resulting in significantly longer total ischaemic delay in the hypothermia group (232 vs 188 minutes; p<0.001).There were no differences in angiographic features and PPCI result between the groups. Intravascular temperature at wire crossing was 33.3+0.9°C. Infarct size/left ventricular mass (IS/LV) by cardiac magnetic resonance (CMR) at day 4-6 was 21.3% in the hypothermia group and 20.0% in the control group (p=0.540). Major adverse cardiac events at 30 days increased non-significantly in the hypothermia group (8.6% vs 1.9%; p=0.117) while cardiogenic shock (10.3% vs 0%; p=0.028) and paroxysmal atrial fibrillation (43.1% vs 3.8%; p<0.001) were significantly more frequent in the hypothermia group.The ZOLL Proteus intravascular cooling system reduced temperature to 33.3°C before PPCI in patients with anterior STEMI. Due to inconsistent patient logistics between the groups, this hypothermia protocol resulted in a longer ischaemic delay, did not reduce IS/LV mass and was associated with increased adverse events
    • …
    corecore