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Abstract
Repair of DNA damage relies on various pathways including 
the base excision repair (BER) which targets erroneous bases in 
the DNA. Here, Uracil-DNA glycosylases (UDGs) are respon-
sible for recognition and removal of uracil base from the DNA. 
Here, we characterize the interaction of Staphylococcus aureus 
UDG (SAUDG) with a naturally occurring variant of S. aureus 
uracil-DNA glycosylase inhibitor (SAUGI). This variant con-
tains a histidine instead of a glutamate at the 24th position which 
affects the SAUDG:SAUGI interaction surface. We assessed the 
complex formation of SAUDG with these two SAUGI variants 
by independent biophysical methods. Our data reveal that the 
residue difference at the 24th position does not have a marked 
effect on the binding affinity, yet it confers alteration of the 
thermodynamics of the interaction. We propose that the E24H 
variant of SAUGI allows efficient complex formation, and con-
sequently, inhibition of SAUDG.
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1 Introduction
Appearance of uracil in DNA, either as a result of cytosine 

deamination or erroneous nucleotide incorporation of DNA 
polymerases, usually a mistake that needs to be excised [1]. 
To avoid mutations, several DNA damage recondition and 
repair pathways have been developed during evolution. The 
base excision repair pathway (BER) corrects DNA base dam-
ages arising e.g. from oxidation, deamination or alkylation. 
The damage is generally the result of the spontaneous decay 
of DNA that occurs during physiological processes. However, 
similar base mismatch may be caused by radiation and envi-
ronmental chemicals as well [2, 3].

As the initial step in BER, the damaged or mismatched base 
is recognized by a DNA glycosylase. The removal of the modi-
fied base performed by these enzymes does not cause major dis-
tortions to the DNA duplex. Uracil-DNA glycosylase (UDG) 
employs a nucleotide-flipping mechanism in which the target 
uracil is extruded out of the DNA double helix and recognized 
by the active site of the enzyme, where catalysis takes place. 
Simultaneously, a bulky hydrophobic or aromatic residue is 
usually inserted into the DNA helix to take the position of the 
displaced base [4].The enzyme hydrolyses the N-C1’ glycosidic 
bond linking the uracil base to the deoxyribose sugar moiety. 
Glycosylase action leaves an abasic site that is further processed 
by short-patch repair or long-patch repair mechanisms that use 
largely different enzymes [5, 6]. The abasic site that is removed 
by a 5’-acting apurinic/apyrimidinic (AP) endonuclease and 
a deoxyribophosphodiesterase (dRpase), leaving a gap that is 
filled by DNA polymerase and closed by DNA ligase [7].

Three structurally unrelated inhibitors of uracil-DNA gly-
cosylase have been identified to date. These include the Uracil 
Glycosylase Inhibitor (UGI) of Bacillus subtilis bacteriophage 
PBS1, the p56 protein encoded by the B. subtilis phage ϕ29 
and the Staphylococcus specific uracil-glycosylase inhibitor 
(SAUGI) [7-10]. The three dimensional structures have also 
been determined for all the three inhibitor proteins in complex 
with their respective binding partners. In all 3D structures, the 
negatively charged residues of the inhibitors follow a recogni-
tion pattern that closely mimics the UDG-bound DNA [8-10]. 
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In the UDG inhibitor research, the UGI protein was the 
first to be described and a straightforward physiological func-
tion could also be defined in this case. Namely, the genome of 
B. subtilis bacteriophages PBS1 and PBS2 naturally contain 
uracil in place of thymines, thus it produces UGI proteins to 
protect their genomic DNA from host UDG repair enzymes 
[8-10]. The second reported inhibitor, termed as p56, is a 
small, 56-residue-long acidic polypeptide encoded by the B. 
subtilis lytic phage ϕ29. Unlike PBS2 phage, the DNA genome 
of ϕ29 does not contain uracil residues. Protein p56 is syn-
thesized upon ϕ 29 infection and knocks out a host-encoded 
BER system that could be harmful for viral replication if uracil 
residues arise in the replicative intermediates [9, 13-15]. Last, 
the S. aureus uracil-DNA glycosylase (SAUGI) have been 
identified in 2014 [10]. While within this study the structure 
of SAUGI: SAUDG complex has been solved, the biological 
role of SAUGI still remains unclear, with several hypotheses 
being proposed. SAUGI may facilitate increased incorpora-
tion of uracil into the viral genome, and this replacement may 
efficiently block the replication of various DNA viruses [10]. 
According to another theory, the SAUGI protein has an inher-
ently increased affinity towards viral UDGs and this may also 
be further tailored, e.g. inhibition of herpes viral UDG can be 
largely elevated [16].

In the present work, we focused on one of the naturally 
occurring residue variation of the SAUGI proteins encoded by 
different Staphylococcal strains. Namely we investigated the 
SAUGIE24H variant as compared to the SAUGI described in [10] 
which is termed here as wild type (SAUGIWT). We employed 
two independent biophysical methods and also provided a 
structural modelling for comparisons. Our data suggest that the 
exchange of glutamate to histidine at this specific location does 
not result in heavy perturbation of the interaction.

2 Materials and Methods
2.1 In silico Blast search and alignments

Blast search for homologous sequences of SAUGI proteins, 
was performed using NBCI Blast and the wild type SAUGI 
sequence (UniProt accession code: Q936H5). The search was 
performed using translated nucleotide query (blastx), in the 
non-redundant protein sequences database, in S. aureus (taxid: 
1280) organism. The alignment was done on sequences with the 
similarity higher than 90%, then adjusted manually. At the 24th 
residue of SAUGI, 70% of the aligned sequences contained glu-
tamate whereas the remaining 30% histidine.

2.2 Cloning and mutagenesis
pET21b vectors encoding SAUDG and SAUGI (later 

termed as SAUGIWT) were kind gifts from Hao-Ching Wang, 
from Taipei Medical University [10]. We have re-cloned the 
DNA coding sequence of SAUGI into the pET15b vector that 
also includes an N-terminal His6 epitope tag. The SAUGI 

mutant construct (SAUGIE24H) was engineered by site-directed 
mutagenesis from SAUGIWT [17] using the QuikChange method 
(Agilent). Primers used for mutagenesis (Table 1) were synthe-
sized by Eurofins MWG GmbH. Constructs were verified by 
DNA sequencing at Eurofins MWG GmbH.

Table 1 Primers for constructing E24H point mutation

F-primer
5’ - cctaccaaaggatgaaaagtggcat 
tgtgaatctatcgaggaaatcg - 3’

R-primer
5’ - cgatttcctcgatagattcacaatg 
ccacttttcatcctttggtagg - 3’

2.3 SAUGI and SAUDG protein expression and 
purification

Plasmids for the production of SAUDG, SAUGIWT and 
SAUGIE24H were transformed into E. coli Rosetta BL21 (DE3) 
PlysS cells (Novagen). The cells were grown in LB medium at 
37°C, and induced at OD600nm = 0.6 with 0.6 mM isopropyl-β-D-1-
thiogalactopyranoside (IPTG), followed by overnight expression 
at 16 °C, then, harvested by centrifugation (4 °C, 4000 g, 20 min). 
The pellet was lyzed in lysis buffer containing 50 mM Tris HCl, 
pH 8.0, 150 mM NaCl, 1 mM ethylenediaminetetraacetic acid 
(EDTA), 5 mM β-mercaptoethanol, 0.1 mM phenylmethylsulfo-
nyl fluoride, 5 mM benzamidine, 0.1 mg/ml lysozyme, 0.1 mg/
ml DNase (Sigma, St. Louis, MO, USA) and 0.01 mg/ml RNase 
A (Invitrogen, Carlsbad, CA, USA). Cell extraction was achieved 
by Potter-Elvehjem homogenization and further assisted by soni-
cation. Cell debris were pelleted by centrifugation at 20 000 × 
g for 30 min. Supernatant was applied onto a Ni-NTA column 
(Qiagen, Hilden, Germany) and washed with a set of washing 
buffers: low salt buffer (50mM HEPES, pH 7.5, 30 mM KCl, 5 
mM β-mercaptoethanol), high salt buffer (50 mM HEPES, pH 
7.5, 300 mM KCl, 5 mM β-mercaptoethanol) and wash buffer 
(50mM HEPES, pH 7.5, 30 mM KCl, 50 mM imidazole, 5 mM 
β-mercaptoethanol). Constructs were finally eluted with elution 
buffer (50 mM HEPES, pH 7.5, 30 mM KCl, 500 mM imidazole, 
5 mM β-mercaptoethanol) and dialyzed against the following 
phosphate buffer: 137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 
2 mM KH2PO4, pH 7.5. Purity of SAUDG (Mw: 26032 Da), 
SAUGIWT (Mw: 15520 Da) and SAUGIE24H (Mw: 15528 Da) con-
structs was assessed by SDS-PAGE (not shown).

2.4 Microscale thermophoresis (MST)
The interaction of SAUDG and SAUGI proteins was stud-

ied using microscale thermophoresis (MST) as implemented 
in the NanoTemper Monolith NT.115 instrument (Nanotemper 
Technologies GmbH, Germany). We used Premium Nanotemper 
capillaries with 60% light emitting diode power and 95% 
MST power for 40 s at 20 °C. SAUDG was labelled using the 
Monolith NT.115 NT-647 RED-NHS amine reactive protein 
labelling kit according to the NanoTemper protocol. Unlabelled 
SAUGIWT or SAUGIE24H was diluted in sixteen twofold dilution 
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n series starting from 2.5 mM. 5 nM of the labelled SAUDG 
was added to each dilution of SAUGI variants and the com-
plex was incubated for 10 minutes at room temperature in the 
final buffer containing 50 mM Tris HCl pH 7.4, 150 mM NaCl, 
10 mM MgCl2, 0.05% Tween 20. Data were analysed using the 
software provided by the manufacturer. Quadratic fit to the data 
according to mass law of action was used for apparent KD calcu-
lation. Each experiment was done in triplicate.

2.5 Isothermal titration calorimetry (ITC)
Calorimetric measurements were performed on a MicroCal-

ITC200 titration calorimeter (Malvern) at 20°C. The protein 
samples were co-dialysed overnight against phosphate buffered 
saline (PBS) pH 7.5 including 137 mM NaCl, 2.7 mM KCl, 
10 mM Na2HPO4, 2 mM KH2PO4 and also supplemented with 
0.5 mM Tris(2-carboxyethyl)phosphine (TCEP). In the experi-
mental setup, the cell of the instrument was filled with 20 μM 
SAUGIWT or SAUGIE24H and the syringe with 200 μM SAUDG. 
Each titration included 19 steps of injection with 2 μl of ligand 
per injection spaced 180 s apart from each other, with the 
injection syringe rotating at 750 r.p.m. The titration data were 
analysed using MICROCAL ORIGIN software, following the 
directions of the manufacturer, in order to calculate the thermo-
dynamic parameters: dissociation constant (KD), stoichiometry 
(N), enthalpy (ΔH) and entropy (ΔS).

3 Results and Discussion
The complex formation of SAUDG with SAUGIWT and 

SAUGIE24H variants were first assessed by MST (Fig. 1).
The thermophoresis induced fluorescence change of NT-647 

dye labelled SAUDG clearly indicated the binding interaction of 
SAUDG with both SAUGI variants. While the binding curves 
had similar appearance for both SAUGIs, the obtained apparent 
KD values of 0.01 ± 0.05 nM indicated that the qualitative deter-
mination of the dissociation constants for these interactions can-
not be accomplished under the experimental conditions due to the 

relative high affinity of SaUGI-SAUDG interaction. Therefore, 
we investigated these interactions by ITC to account for the qual-
itative characterization of binding affinity and energetics.

ITC is a highly relevant biophysical technique for biomo-
lecular interaction analysis which in addition to binding affin-
ity also simultaneously reports stoichiometry and the enthalpic 
component of complex formation. Titration of SAUDG to both 
SAUGI variants provided similar binding affinities and a one to 
one stoichiometry of interaction (Fig. 2). Importantly, Fig. 2 and 
Fig. 3 show a drastic change in the thermodynamic character 
of the interaction for the wild type and the mutant cases. In the 
complexation of SAUDG and SAUGIWT favourable enthalpic 
and entropic components could be detected, while in the case 
of SAUGIE24H, binding is governed by large favourable entropic 
component opposed by small unfavourable binding enthalpy. 
We consider that our ITC experiments are reliable in terms of 
binding energetics characterization even despite the presence of 
the background noise. Yet the obtained KD values are far from 
the ones published before for SAUDG: SAUGIWT interaction 
[10]. Additional experiments, e.g. parallel measurements reverse 
ITC titration or a displacement titration, are required to better 
describe the binding affinity of the SAUDG: SAUGI interaction.

To further explore the effect of the mutation we also mod-
elled this residue change into the experimentally determined 
3D structure of the SAUDG: SAUGI complex [10], using the 
built-in Mutagenesis module of the PyMOL program (PyMOL 
Molecular Graphics System, Version 1.8 Schrödinger, LLC). 
The most probable histidine conformer of the E24H mutation is 
visualized on Fig. 4.

In the wild type complex the Glu24 residue participates in sol-
vent mediated polar contacts with SAUDG Lys79, Gln66 and Pro64 
which may be affected by the replacement of this glutamate to 
histidine. Note that water-mediated polar interactions often play 
an instrumental role in stabilization of protein-protein interac-
tions e.g. in case of [19, 20]. However, potential alterations of 
indirect interprotomer interactions due to the different variants 

Fig. 1 SAUDG interaction with SAUGI variants measured by microscale thermophoresis (MST). The concentration of SAUDG was kept constant at 
5 nM during the measurements. Data were fitted with quadratic equation with the software of MST to provide apparent dissociation constants. Mean and 

SD of three replicates are shown.



54 Period. Polytech. Chem. Eng. V. Papp-Kádár

cannot be faithfully interpreted on the sole basis of the in silico 
model. To account for the in-depth molecular basis of the E24H 
mutation, additional evidences from, e.g. molecular dynamics or 
high resolution x-ray crystal structures may be required.

4 Conclusions
The biochemical properties of glutamate and histidine resi-

dues show clear differences with regard to electrostatic charge, 
aromaticity and involvement in hydrogen bond interactions as 
acceptor or donor. However, in our specific situation the per-
formed biophysical measurements suggest that the affinity of 
the interaction between the SAUDG glycosylase and its SAUGI 
inhibitor was not largely altered by the replacement of SAUGI 
Glu24 to His at the interprotomer interaction surface. Despite 
the observed differences in binding energetics, our in vitro 

characterization suggests that both SAUGIWT and SAUGIE24H 

variants have similar physiological role in SAUDG inhibition. 
This finding potentially underlines the significance of this inter-
action for the pathogenic Staphylococcus organism.
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