3,440 research outputs found

    Statistical Basis for Predicting Technological Progress

    Get PDF
    Forecasting technological progress is of great interest to engineers, policy makers, and private investors. Several models have been proposed for predicting technological improvement, but how well do these models perform? An early hypothesis made by Theodore Wright in 1936 is that cost decreases as a power law of cumulative production. An alternative hypothesis is Moore's law, which can be generalized to say that technologies improve exponentially with time. Other alternatives were proposed by Goddard, Sinclair et al., and Nordhaus. These hypotheses have not previously been rigorously tested. Using a new database on the cost and production of 62 different technologies, which is the most expansive of its kind, we test the ability of six different postulated laws to predict future costs. Our approach involves hindcasting and developing a statistical model to rank the performance of the postulated laws. Wright's law produces the best forecasts, but Moore's law is not far behind. We discover a previously unobserved regularity that production tends to increase exponentially. A combination of an exponential decrease in cost and an exponential increase in production would make Moore's law and Wright's law indistinguishable, as originally pointed out by Sahal. We show for the first time that these regularities are observed in data to such a degree that the performance of these two laws is nearly tied. Our results show that technological progress is forecastable, with the square root of the logarithmic error growing linearly with the forecasting horizon at a typical rate of 2.5% per year. These results have implications for theories of technological change, and assessments of candidate technologies and policies for climate change mitigation

    Giant QCD K-factors beyond NLO

    Get PDF
    Hadronic observables in Z+jet events can be subject to large NLO corrections at TeV scales, with K-factors that even reach values of order 50 in some cases. We develop a method, LoopSim, by which approximate NNLO predictions can be obtained for such observables, supplementing NLO Z+jet and NLO Z+2-jet results with a unitarity-based approximation for missing higher loop terms. We first test the method against known NNLO results for Drell-Yan lepton pt spectra. We then show our approximate NNLO results for the Z+jet observables. Finally we examine whether the LoopSim method can provide useful information even in cases without giant K-factors, with results for observables in dijet events that can be compared to early LHC data.Comment: 38 pages, 13 figures; v2 includes additional reference

    Renormalization of QCD_2

    Get PDF
    The low energy infrared scaling of the multi-color 2-dimensional quantum chromodynamics is determined in the framework of its bosonized model by using the functional renormalization group method with gliding sharp cut-off k in momentum space in the local potential approximation. The model exhibits a single phase with a superuniversal effective potential.Comment: 15 pages, 3 figures, final versio

    Functional renormalization group with a compactly supported smooth regulator function

    Full text link
    The functional renormalization group equation with a compactly supported smooth (CSS) regulator function is considered. It is demonstrated that in an appropriate limit the CSS regulator recovers the optimized one and it has derivatives of all orders. The more generalized form of the CSS regulator is shown to reduce to all major type of regulator functions (exponential, power-law) in appropriate limits. The CSS regulator function is tested by studying the critical behavior of the bosonized two-dimensional quantum electrodynamics in the local potential approximation and the sine-Gordon scalar theory for d<2 dimensions beyond the local potential approximation. It is shown that a similar smoothing problem in nuclear physics has already been solved by introducing the so called Salamon-Vertse potential which can be related to the CSS regulator.Comment: JHEP style, 11 pages, 2 figures, proofs corrected, accepted for publication by JHE

    Next-to-leading order QCD corrections to electroweak Zjj production in the POWHEGBOX

    Full text link
    We present an implementation of electroweak Z-boson production in association with two jets at hadron colliders in the POWHEG framework, a method that allows the interfacing of NLO-QCD calculations with parton-shower Monte Carlo programs. We focus on the leptonic decays of the weak gauge boson, and take photonic and non-resonant contributions to the matrix elements fully into account. We provide results for observables of particular importance for the suppression of QCD backgrounds to vector-boson fusion processes by means of central-jet-veto techniques. While parton-shower effects are small for most observables associated with the two hardest jets, they can be more pronounced for distributions that are employed in central-jet-veto studies.Comment: 12 pages, 5 figure

    Cross Section Ratios between different CM energies at the LHC: opportunities for precision measurements and BSM sensitivity

    Get PDF
    The staged increase of the LHC beam energy provides a new class of interesting observables, namely ratios and double ratios of cross sections of various hard processes. The large degree of correlation of theoretical systematics in the cross section calculations at different energies leads to highly precise predictions for such ratios. We present in this letter few examples of such ratios, and discuss their possible implications, both in terms of opportunities for precision measurements and in terms of sensitivity to Beyond the Standard Model dynamics.Comment: 19 pages, 9 figure

    Phase Structure and Compactness

    Get PDF
    In order to study the influence of compactness on low-energy properties, we compare the phase structures of the compact and non-compact two-dimensional multi-frequency sine-Gordon models. It is shown that the high-energy scaling of the compact and non-compact models coincides, but their low-energy behaviors differ. The critical frequency β2=8π\beta^2 = 8\pi at which the sine-Gordon model undergoes a topological phase transition is found to be unaffected by the compactness of the field since it is determined by high-energy scaling laws. However, the compact two-frequency sine-Gordon model has first and second order phase transitions determined by the low-energy scaling: we show that these are absent in the non-compact model.Comment: 21 pages, 5 figures, minor changes, final version, accepted for publication in JHE

    Next-to-leading order predictions for Z gamma+jet and Z gamma gamma final states at the LHC

    Full text link
    We present next-to-leading order predictions for final states containing leptons produced through the decay of a Z boson in association with either a photon and a jet, or a pair of photons. The effect of photon radiation from the final state leptons is included and we also allow for contributions arising from fragmentation processes. Phenomenological studies are presented for the LHC in the case of final states containing charged leptons and in the case of neutrinos. We also use the procedure introduced by Stewart and Tackmann to provide a reliable estimate of the scale uncertainty inherent in our theoretical calculations of jet-binned Z gamma cross sections. These computations have been implemented in the public code MCFM.Comment: 30 pages, 10 figure

    Validity of Different Models of Interfaces in Adhesion and Diffusion Bonded Joints

    Get PDF
    The need to characterise thin layers between thicker sections of material arises in several current NDE problems, for example the oxide layer between the adhesive and adherend in an adhesively bonded joint, and an interlayer of a different material in a diffusion bonded joint. Many workers have attempted to characterise these layers by ultrasonic reflection coefficient measurements
    • …
    corecore